Dendrimers as Drug Delivery Carriers in the Dentistry
DOI:
https://doi.org/10.22270/ajdhs.v1i1.3Abstract
This review gives concise information about the application of dendrimers as drug delivery carrier in the field of drug delivery. Due to their unique architecture these have improved physical and chemical properties. Due to their terminal groups these show high solubility, miscibility and reactivity. Dendrimers have well defined size, shape, molecular weight and monodispersity. These properties make the dendrimers a suitable carrier in drug delivery application. Dendrimers are unimolecular miceller in nature and due to this enhances the solubility of poorly soluble drugs. Their compatibility with DNA, heparin and polyanions make them more versatile. Dendrimers, also referred as modern day polymers, they offer much more good properties than the conventional polymers. Due to their multivalent and mono disperse character dendrimers have stimulated wide interest in the field of chemistry biology, drug delivery, gene therapy and chemotherapy. Self-assembly produces a faster means of generating nanoscopic functional and structural systems. But their actual utility in drug delivery can be assessed only after deep understanding of factors affecting their properties and their behaviour in vivo.
Keywords: Dendrimers, Drug targeting, nanoscale carriers.
References
Prajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC. Dendrimers In Drug Delivery, Diagnosis And Therapy: Basics And Potential Applications. Journal of Drug Delivery and Therapeutics, 2016; 6(1):67-92. https://doi.org/10.22270/jddt.v6i1.1190
Dwivedi DK, Singh AK, Dendrimers: a novel carrier system for drug delivery, Journal of Drug Delivery and Therapeutics 2014; 4(5):1-6 https://doi.org/10.22270/jddt.v4i5.968
D'Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release 2004; 95:5447-53. https://doi.org/10.1016/j.jconrel.2003.12.006
Tomalia DA, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 2005; 30:294-324. https://doi.org/10.1016/j.progpolymsci.2005.01.007
Boas U, Jørn Bolstad Christensen, Heegaard PMH, "Dendrimers in medicine and biotechnology: new molecular tools", 2006, 62-70 https://doi.org/10.1039/9781847552679-00062
Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004; 303:1818 22. https://doi.org/10.1126/science.1095833
Soto Castro D, Cruz Morales JA, Ramírez Apan MT, Guadarrama P. Solubilization and anticancer activity enhancement of Methotrexate by novel dendrimeric nanodevices synthesized in one step reaction. Bioorg Chem 2012; 41 2:13 21. https://doi.org/10.1016/j.bioorg.2012.01.002
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57:2215 37. https://doi.org/10.1016/j.addr.2005.09.019
Patton DL, Cosgrove Sweeney YT, McCarthy TD, Hillier SL. Preclinical safety and efficacy assessments of dendrimer based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother 2006; 50:1696 700. https://doi.org/10.1128/AAC.50.5.1696-1700.2006
Tolia GT, Choi HH. The role of dendrimers in topical drug delivery. Pharm Technol 2008; 32:88 98.
Swanson DR, Huang B, Abdelhady HG, Tomalia DA. Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly (ester acrylate/amine) (PEA) dendrimers. New J Chem 2007; 31:1368 78. https://doi.org/10.1039/b700193m
Tomalia DA, Fréchet JM. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J Polym Sci A Polym Chem 2002; 40:2719 28. https://doi.org/10.1002/pola.10301
Tomalia DA, Rookmaker M. Poly (propylene imine) dendrimers. Polymer Data Handbook. NewYork: Oxford University Press; 2009.
Singh P. Dendrimers and their applications in immunoassays and clinical diagnostics. Biotechnol Appl Biochem 2007; 48:1 9. https://doi.org/10.1042/BA20070019
Hill SW, Heidecker G. Transfection of hematopoetic cells in suspension using an activated dendrimer reagent. In Qiagen News. Sect. 1998; 8 10.
Liu H, Wang H, Yang W, Cheng Y. Disulfide cross linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc 2012; 134:17680 7. https://doi.org/10.1021/ja307290j
Spangler BD. Inventor biosensors utilizing dendrimer immobilized ligands and there use thereof patent. United States Patent 7138121. 2006.
Bapat RA, Dharmadhikari S, Chaubal TV, Amin MCIM, Bapat P, Gorain B, Choudhury H, Vincent C, Kesharwani P, The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon. 2019; 5(10):e02544. PMCID: PMC6820096 PMID: 31687479 https://doi.org/10.1016/j.heliyon.2019.e02544
Parajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC, Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update, Journal of Drug Delivery andtherapeutics. 2016; 6(2):71-88 https://doi.org/10.22270/jddt.v6i2.1195
Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, Cheng L, Zhou X, Int. J. Oral Sci. 2019, 11:15. https://doi.org/10.1038/s41368-019-0048-z
Nicholas Yesbeck, A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Dentistry at Virginia Commonwealth University. 5 Jan 2021. https://scholarscompass.vcu.edu/etd/6541
Ramyaa Shri K, Subitha P, Srinivasan N, Ramachandran M, Shoba N, Fabrication of Dexamethasone-Silver Nanoparticles Entrapped Dendrimer Collagen Matrix Nanoparticles for Dental Applications. Biointerface Research in Applied Chemistry. 2021; 11(6):14935 -14955 https://doi.org/10.33263/BRIAC116.1493514955
Jaymand M.; Lotfi M.; Lotfi R. Functional dendritic compounds: potential prospective candidates for dental restorative materials and in situ re-mineralization of human tooth enamel. Rsc Advances 2016; 6:43127-43146 https://doi.org/10.1039/C6RA05722E
Gardiner J., Freeman S., Leach M., Green A., Alcock J., D'Emanuele A. PAMAM dendrimers for the delivery of the antibacterial Triclosan. J. Enzym. Inhib. Med. Chem. 2008; 23:623-628. https://doi.org/10.1080/14756360802205257 [PubMed] [Google Scholar]
Dung TH, Do LT, Yoo H. PAMAM Dendrimer Generation 5-Pluronic F127 Nanofilm as a Matrix for Local Metronidazole Release. J Biomed Nanotech. 2013; 9(7):1286-92 https://doi.org/10.1166/jbn.2013.1534
Dodiuk-Kenig H., Lizenboim K., Eppelbaum I., Zalsman B., Kenig S. The effect of hyper-branched polymers on the properties of dental composites and adhesives. J. Adhes. Sci. Technol. 2004; 18:1723-1737. https://doi.org/10.1163/1568561042708304
Paul N.M., Bader S.J., Schricker S.R., Parquette J.R. 2,3-Branching benzyl ether dendrimers for the enhancement of dental composites. React. Funct. Polym. 2006; 66:1684-1695. https://doi.org/10.1016/j.reactfunctpolym.2006.07.003 [Google Scholar]
Kim J.K., Shukla R., Casagrande L., Sedgley C., Nör J.E., Baker J.R. Differentiating dental pulp cells via RGD-dendrimer conjugates. J. Dent. Res. 2010; 89:1433-1438. https://doi.org/10.1177/0022034510384870 [PubMed] [Google Scholar]
Eichler M., Katzur V., Scheideler L., Haupt M., Geis-Gerstorfer J., Schmalz G. The impact of dendrimer-grafted modifications to model silicon surfaces on protein adsorption and bacterial adhesion. Biomaterials. 2011; 32:9168-9179. https://doi.org/10.1016/j.biomaterials.2011.08.063 [PubMed] [Google Scholar]
Li J., Yang J., Li J., Chen L., Liang K., Wu W. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials. 2013; 34:6738-6747 https://doi.org/10.1016/j.biomaterials.2013.05.046 [PubMed] [Google Scholar]
Bengazi F., Lang N.P., Canciani E., Viganò P., Velez J.U., Botticelli D. Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog. Clin. Oral Implant. Res. 2014; 25:10-15. https://doi.org/10.1111/clr.12082 [PubMed] [Google Scholar]
Galli C., Piemontese M., Meikle S.T., Santin M., Macaluso G.M., Passeri G. Biomimetic coating with phosphoserine-tethered poly(epsilon-lysine) dendrons on titanium surfaces enhances Wnt and osteoblastic differentiation. Clin. Oral Implant. Res. 2014; 25:e133-e139. https://doi.org/10.1111/clr.12075 [PubMed] [Google Scholar]
Lin X., Xie F., Ma X., Hao Y., Qin H., Long J. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J. Biomater. Sci. Polym. Ed. 2017; 28:846-863. https://doi.org/10.1080/09205063.2017.1308654 [PubMed] [Google Scholar]
Tao S., Fan M., Xu H.H.K., Li J., He L., Zhou X. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017; 7:54947-54955. https://doi.org/10.1039/C7RA11844A [Google Scholar]
Xiao S., Liang K., Weir M.D., Cheng L., Liu H., Zhou X. Combining bioactive multifunctional dental composite with PAMAM for root dentin remineralization. Mater. (Basel, Switzerland) 2017; 10:89. https://doi.org/10.3390/ma10010089 [PMC free article] [PubMed] [Google Scholar]
Ge Y., Ren B., Zhou X., Xu H.H.K., Wang S., Li M. Novel dental adhesive with biofilm-regulating and remineralization capabilities. Mater. (Basel, Switzerland) 2017; 10:26. https://doi.org/10.3390/ma10010026 [PMC free article] [PubMed] [Google Scholar]
El-Aziz Khater A., Niazy M., El-Aziz Gad N. The Effect of Poly Amido Amine Dendrimer, Gluteraldehyde and Their Combination on the Micro Hardness and Micromorphology of Demineralized Dentin. Al-Azhar Dental Journal for Girls, 2018; 5(4):341-347. https://doi.org/10.21608/adjg.2018.20019
Published
How to Cite
Issue
Section
Citations
Copyright (c) 2021 Sunil Kumar Prajapati, Vijay Kumar Tilak, R C Dhakar, Krishan Kumar Verma, Vikrant Saluja, R. Jayakumararaj, Rajeshwar Kamal Kant Arya, Manas Kumar Das, Soumya Das
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.