

Metabolic Syndrome in HIV-Infected Sickle Cell Patients: A Review

Emmanuel Ifeanyi Obeagu ^{1*} and Olga Geogevna Goryacheva ²

¹ Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

² Perm State Medical University named after Academician E.A. Wagner, Russia

Article Info:

Abstract

Article History:

Received 06 Jan 2025

Reviewed 10 Feb 2025

Accepted 02 March 2025

Published 15 June 2025

Cite this article as:

Obeagu EI, Goryacheva OG, Metabolic Syndrome in HIV-Infected Sickle Cell Patients: A Review, Asian Journal of Dental and Health Sciences. 2025; 5(2):8-13

DOI: <http://dx.doi.org/10.22270/ajdhs.v5i2.125>

Metabolic syndrome (MetS) is a growing concern in the context of chronic diseases, particularly among patients co-infected with HIV and sickle cell disease (SCD). This review aims to elucidate the prevalence, pathophysiology, and clinical implications of metabolic syndrome in HIV-infected sickle cell patients, a population that experiences unique challenges due to the interplay of these two conditions. Emerging evidence suggests that metabolic syndrome may exacerbate the complications associated with both HIV and SCD, leading to increased morbidity and mortality. The pathophysiological mechanisms underlying metabolic syndrome in this population are multifaceted, involving chronic inflammation, oxidative stress, and the metabolic effects of antiretroviral therapy (ART). These factors can contribute to insulin resistance, dyslipidemia, hypertension, and obesity, further complicating the management of both HIV and sickle cell disease. Understanding these interactions is critical for healthcare providers as they develop targeted strategies to monitor and manage metabolic syndrome, ensuring optimal patient care.

Keywords: Metabolic Syndrome, HIV, Sickle Cell Disease, Antiretroviral Therapy, Comorbidities

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Introduction

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including obesity, insulin resistance, hypertension, and dyslipidemia, which collectively increase the risk of cardiovascular diseases and type 2 diabetes. The World Health Organization defines MetS as a significant global health concern, affecting millions worldwide. As chronic diseases become more prevalent, understanding the interrelationship between these conditions is crucial, particularly in populations with complex health needs, such as those co-infected with HIV and sickle cell disease (SCD).¹⁻² HIV infection has transformed from a fatal diagnosis to a manageable chronic condition due to advancements in antiretroviral therapy (ART). However, long-term ART can induce metabolic changes, leading to an increased incidence of metabolic syndrome among HIV-infected individuals. The risk factors for metabolic syndrome, including obesity and dyslipidemia, may be exacerbated by the chronic inflammation and immune dysregulation associated with HIV. Consequently, individuals with HIV are at a heightened risk of developing MetS, complicating their overall health management.³⁻⁵ Sickle cell disease, a hereditary blood disorder characterized by abnormal hemoglobin, poses additional challenges to patients' health. Individuals with SCD often experience recurrent pain crises, organ damage, and increased risk of infections. The burden of chronic illness associated

with SCD may interact with the metabolic derangements seen in HIV-infected patients, creating a complex clinical picture that requires careful management. The interplay between these two conditions can lead to an increased prevalence of metabolic syndrome, further compromising health outcomes.⁶⁻⁷

The co-occurrence of HIV and sickle cell disease may exacerbate the complications associated with metabolic syndrome. Patients with this dual diagnosis often face compounded health challenges, including increased cardiovascular risk and a higher likelihood of developing metabolic disorders. Understanding the prevalence of metabolic syndrome in this population is essential for healthcare providers to implement appropriate screening and management strategies. Moreover, the unique clinical manifestations and complications associated with MetS in HIV-infected sickle cell patients necessitate further exploration.⁸⁻⁹ Pathophysiological, metabolic syndrome in this population is influenced by several interconnected mechanisms. Chronic inflammation due to HIV infection can lead to insulin resistance, while oxidative stress may contribute to endothelial dysfunction and dyslipidemia. Additionally, the effects of ART on lipid metabolism and glucose homeostasis must be considered, as certain antiretroviral agents can exacerbate metabolic abnormalities.¹⁰⁻¹¹ Management of metabolic syndrome in HIV-infected sickle cell patients requires a

multifaceted approach, focusing on lifestyle modifications and pharmacological interventions. Addressing modifiable risk factors, such as diet and physical activity, can significantly improve metabolic health and reduce the risk of cardiovascular events. Furthermore, healthcare providers must carefully consider the choice of antiretroviral therapy to minimize potential metabolic side effects while effectively controlling viral loads.¹²⁻¹³ This review aims to explore the prevalence, pathophysiology, clinical manifestations, and management strategies for metabolic syndrome in HIV-infected sickle cell patients.

Prevalence of Metabolic Syndrome in HIV-Infected Sickle Cell Patients

The prevalence of metabolic syndrome (MetS) among HIV-infected sickle cell patients is a growing area of concern within the medical community, as it presents unique challenges for healthcare providers managing these complex cases. Recent studies suggest that the coexistence of HIV and sickle cell disease (SCD) may significantly increase the risk of developing MetS compared to individuals with only one of these conditions. For instance, research indicates that the prevalence of metabolic syndrome in HIV-infected individuals can range from 30% to 50%, depending on factors such as age, gender, ethnicity, and the presence of other comorbidities. When SCD is introduced into the equation, this prevalence is likely to increase due to the compounding effects of both diseases.¹⁴⁻¹⁶ Several studies have focused specifically on the prevalence of metabolic syndrome in patients with both HIV and SCD, revealing alarming statistics. In one study conducted in Nigeria, researchers found that the prevalence of MetS among HIV-infected sickle cell patients was approximately 45%, highlighting the urgency of addressing this public health issue. Another study in a cohort of African American patients revealed similar findings, with nearly 50% of those co-infected exhibiting features of metabolic syndrome. These statistics underscore the necessity of routine screening for metabolic syndrome in this vulnerable population to identify at-risk individuals early and initiate appropriate interventions.¹⁷⁻¹⁹

The increased prevalence of metabolic syndrome in HIV-infected sickle cell patients can be attributed to a variety of factors, including the underlying pathophysiological mechanisms associated with both conditions. Chronic inflammation and oxidative stress related to HIV infection can contribute to insulin resistance and dyslipidemia, which are key components of MetS. Furthermore, the hematological abnormalities and complications of sickle cell disease, such as repeated vaso-occlusive crises and organ damage, may further exacerbate metabolic derangements, making this patient population particularly susceptible to developing MetS.²⁰⁻²¹ Demographic factors also play a significant role in the prevalence of metabolic syndrome among HIV-infected sickle cell patients. Studies have shown that certain populations, such as women and older individuals, may be at higher risk for developing MetS due to hormonal changes and age-related factors

that influence metabolism. Additionally, lifestyle factors, such as physical inactivity and poor dietary habits, are prevalent in many individuals with SCD and HIV, further contributing to the higher incidence of metabolic syndrome in this cohort.²²⁻²³

Pathophysiology

The pathophysiology of metabolic syndrome (MetS) in HIV-infected sickle cell patients is complex and multifactorial, involving interactions between chronic inflammation, oxidative stress, metabolic dysregulation, and the effects of antiretroviral therapy (ART). Both HIV and sickle cell disease (SCD) are associated with chronic inflammation, which plays a pivotal role in the development of metabolic syndrome. In HIV-infected individuals, persistent immune activation leads to elevated levels of pro-inflammatory cytokines, which can disrupt normal metabolic processes and contribute to insulin resistance. This inflammation is further exacerbated by the hemolysis and vascular complications inherent in SCD, leading to additional metabolic disturbances.²⁴⁻²⁵ Insulin resistance is a central feature of metabolic syndrome, and its development in HIV-infected sickle cell patients can be attributed to several mechanisms. Chronic inflammation, particularly from cytokines such as tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6), impairs insulin signaling pathways, leading to reduced glucose uptake in peripheral tissues. Additionally, oxidative stress, which is prevalent in both HIV infection and sickle cell disease, contributes to the impairment of insulin sensitivity. Reactive oxygen species (ROS) generated during the inflammatory response can damage pancreatic β -cells, further exacerbating insulin resistance and impairing insulin secretion.²⁶⁻²⁷

Dyslipidemia is another critical component of metabolic syndrome that is influenced by the interplay of HIV and SCD. Patients with HIV often exhibit alterations in lipid metabolism due to both the viral infection and the effects of ART. Some antiretroviral agents, particularly those in the protease inhibitor class, are associated with lipid abnormalities, including increased triglycerides and low-density lipoprotein (LDL) cholesterol levels. In sickle cell disease, the hemolytic process can lead to elevated levels of free fatty acids and altered lipid profiles, compounding the risk of dyslipidemia and cardiovascular complications. This combination of factors places HIV-infected sickle cell patients at a heightened risk of developing atherogenic dyslipidemia.²⁸⁻²⁹ Hypertension, another key component of metabolic syndrome, can also be exacerbated in this population. Chronic inflammation and oxidative stress contribute to endothelial dysfunction, leading to impaired vasodilation and increased vascular resistance. Additionally, fluid retention and changes in renal function associated with both HIV and SCD can further elevate blood pressure. As a result, many patients with HIV and sickle cell disease may experience hypertension, which increases their overall cardiovascular risk.³⁰⁻³¹ The combined effects of these metabolic derangements can have significant implications for the long-term health of HIV-infected

sickle cell patients. The presence of metabolic syndrome not only increases the risk of cardiovascular diseases and type 2 diabetes but can also complicate the management of both HIV and sickle cell disease. The interplay of these conditions necessitates a comprehensive understanding of their pathophysiology to develop effective prevention and treatment strategies tailored to this vulnerable population.³²⁻³³

Clinical Manifestations

The clinical manifestations of metabolic syndrome (MetS) in HIV-infected sickle cell patients are diverse and can significantly impact the overall health and quality of life of affected individuals. These manifestations arise from the combination of metabolic abnormalities characteristic of MetS, such as obesity, insulin resistance, dyslipidemia, and hypertension, alongside the unique complications associated with HIV and sickle cell disease (SCD).³⁴⁻³⁵ One of the most prominent clinical features of metabolic syndrome is central obesity, which is particularly concerning in HIV-infected individuals. Abdominal adiposity is associated with an increased risk of cardiovascular diseases and insulin resistance. Patients may present with increased waist circumference, indicative of visceral fat accumulation, which is linked to a higher likelihood of developing type 2 diabetes and other metabolic complications. In HIV-infected sickle cell patients, weight gain may also be influenced by ART, with certain medications associated with increased appetite and fat accumulation.³⁶⁻³⁷ Insulin resistance is another critical clinical manifestation of metabolic syndrome that can lead to hyperglycemia and, ultimately, type 2 diabetes mellitus. Patients may experience symptoms such as increased thirst, frequent urination, and fatigue, which can significantly impair their quality of life. Additionally, the presence of insulin resistance can complicate the management of HIV, as fluctuating blood glucose levels may affect overall health status and the effectiveness of antiretroviral medications. Monitoring glucose levels becomes essential for identifying and managing this complication early.³⁸⁻³⁹

Dyslipidemia is often present in patients with metabolic syndrome, characterized by elevated triglycerides and low high-density lipoprotein (HDL) cholesterol levels. Patients may be asymptomatic initially, but the long-term implications of dyslipidemia can lead to cardiovascular disease and other complications. Clinically, healthcare providers may observe patients with atherosclerotic changes, such as carotid artery thickening or coronary artery disease, as a consequence of the lipid abnormalities associated with MetS. In HIV-infected sickle cell patients, dyslipidemia can be exacerbated by the hemolytic process of SCD, leading to additional cardiovascular risks.⁴⁰ Hypertension is a common clinical manifestation of metabolic syndrome that is particularly relevant in HIV-infected sickle cell patients. Elevated blood pressure may often go unnoticed until it reaches severe levels, as patients may be asymptomatic initially. However, chronic hypertension can lead to significant complications, including heart disease, stroke, and renal dysfunction.

Regular monitoring of blood pressure is crucial in this population to ensure timely intervention and management of hypertension.⁴¹ Furthermore, the psychological impact of metabolic syndrome cannot be overlooked. The stress associated with managing multiple chronic conditions, such as HIV and sickle cell disease, can contribute to anxiety and depression. These mental health issues may be compounded by the physical manifestations of metabolic syndrome, including changes in body image related to obesity and the implications of chronic illness. Addressing the psychological well-being of patients is essential to provide comprehensive care and support.⁴²

Management Strategies

The management of metabolic syndrome (MetS) in HIV-infected sickle cell patients requires a comprehensive and individualized approach that addresses the unique needs and challenges of this population. Given the complex interplay of chronic conditions, effective management strategies must focus on lifestyle modifications, pharmacological interventions, and regular monitoring to optimize patient outcomes. By implementing targeted strategies, healthcare providers can help mitigate the risks associated with metabolic syndrome and improve the overall health and quality of life of affected individuals.⁴³

Lifestyle Modifications: One of the cornerstone strategies for managing metabolic syndrome is the promotion of lifestyle modifications. Encouraging patients to adopt a balanced diet, rich in fruits, vegetables, whole grains, and lean proteins, is crucial for addressing obesity and dyslipidemia. Nutritional counseling can help patients understand the importance of portion control and the impact of dietary choices on their metabolic health. Additionally, incorporating regular physical activity into their daily routines is essential for weight management and improving insulin sensitivity. Healthcare providers should recommend at least 150 minutes of moderate-intensity aerobic exercise per week, tailored to the individual's capabilities and preferences.⁴⁴

Weight Management: For many patients, weight loss is a primary goal in managing metabolic syndrome. A gradual reduction in body weight can significantly improve metabolic parameters, including insulin sensitivity, blood pressure, and lipid profiles. Healthcare providers can work with patients to set realistic weight loss goals and provide support through behavioral interventions, such as counseling or support groups. In cases where lifestyle modifications are insufficient, more intensive interventions, including medical weight loss programs or referral to specialized obesity management clinics, may be considered.⁴⁵

Pharmacological Interventions: When lifestyle modifications alone are inadequate to control metabolic syndrome components, pharmacological interventions may be necessary. Antihypertensive medications can be prescribed to manage elevated blood pressure, while statins or fibrates may be indicated for dyslipidemia. In patients with significant insulin resistance or

hyperglycemia, medications such as metformin can be used to improve glycemic control. It is essential for healthcare providers to carefully consider the potential interactions between these medications and antiretroviral therapy (ART), as some antiretroviral agents may exacerbate metabolic abnormalities.⁴⁶

Monitoring and Screening: Regular monitoring of metabolic parameters is crucial for the effective management of metabolic syndrome in HIV-infected sickle cell patients. Healthcare providers should conduct routine screenings for obesity, blood pressure, lipid levels, and glucose levels to identify at-risk individuals early. Establishing a schedule for follow-up visits allows for ongoing assessment of metabolic status and timely adjustments to management strategies. Additionally, patients should be educated on recognizing symptoms of metabolic syndrome and encouraged to report any significant changes in their health.⁴⁷

Addressing Psychosocial Factors: The psychological and social aspects of managing metabolic syndrome should not be overlooked. Chronic illness can lead to increased stress, anxiety, and depression, which may hinder patients' ability to adhere to lifestyle modifications and treatment plans. Integrating mental health support into the management plan is vital for addressing these challenges. Referral to mental health professionals or support groups can provide patients with the necessary tools to cope with the emotional burden of their conditions.⁴⁸

Patient Education and Empowerment: Educating patients about metabolic syndrome, its risks, and the importance of adherence to management strategies is essential for promoting self-management and empowerment. Healthcare providers should offer clear and accessible information on lifestyle changes, medication adherence, and the significance of regular monitoring. Empowering patients to take an active role in their health can lead to improved outcomes and a better quality of life.⁴⁵

Challenges and Future Directions

The management of metabolic syndrome (MetS) in HIV-infected sickle cell patients presents several challenges that must be addressed to improve health outcomes. Understanding these challenges is crucial for developing effective strategies and future research directions. By identifying barriers to care and exploring innovative approaches, healthcare providers can enhance the management of this complex population.⁴⁶

Challenges in Diagnosis and Management: One of the primary challenges in managing metabolic syndrome in this population is the overlap of symptoms and complications associated with both HIV and sickle cell disease (SCD). The clinical manifestations of MetS, such as obesity, insulin resistance, and hypertension, can be easily misattributed to the underlying chronic conditions, leading to delayed diagnosis and management. Furthermore, the interactions between antiretroviral therapy (ART) and medications for MetS can complicate treatment plans. Healthcare providers must maintain a high index of suspicion and conduct

regular screenings to ensure timely identification and intervention.⁴⁷

Socioeconomic Barriers: Socioeconomic factors significantly influence the management of metabolic syndrome in HIV-infected sickle cell patients. Limited access to healthcare services, nutritious food, and opportunities for physical activity can hinder patients' ability to adopt healthy lifestyle changes. Additionally, financial constraints may limit access to necessary medications and specialized care. Addressing these socioeconomic barriers is essential for improving patient outcomes and ensuring equitable healthcare access for this vulnerable population.⁴⁸

Psychosocial Factors and Treatment Adherence: The psychological impact of living with multiple chronic conditions can affect treatment adherence and self-management in HIV-infected sickle cell patients. Mental health issues, such as anxiety and depression, may complicate the adoption of lifestyle modifications and medication adherence. Comprehensive care should include mental health support to address these challenges and empower patients to actively engage in their health management. Future research should focus on developing effective psychosocial interventions tailored to the needs of this population.⁴⁵

Research Gaps and Future Directions: There is a need for further research to elucidate the pathophysiological mechanisms underlying metabolic syndrome in HIV-infected sickle cell patients. Investigating the interactions between chronic inflammation, oxidative stress, and metabolic dysregulation can provide valuable insights into targeted interventions. Additionally, clinical trials are needed to evaluate the efficacy and safety of specific therapies aimed at managing metabolic syndrome in this population, including novel agents that may have fewer metabolic side effects.⁴⁶

Innovative Approaches: Future directions in managing metabolic syndrome may include the integration of technology in patient care. Telemedicine and mobile health applications can facilitate regular monitoring, improve patient education, and enhance communication between patients and healthcare providers. Utilizing these technologies can empower patients to take an active role in their health management and help overcome some of the barriers associated with traditional healthcare delivery.⁴⁷

Interdisciplinary Collaboration: To effectively manage metabolic syndrome in HIV-infected sickle cell patients, interdisciplinary collaboration among healthcare providers is essential. A team-based approach that includes primary care physicians, hematologists, endocrinologists, dietitians, and mental health professionals can ensure comprehensive care tailored to the unique needs of this population. Future initiatives should promote collaboration and communication among providers to optimize management strategies and improve patient outcomes.⁴⁸

Conclusion

Metabolic syndrome is a significant health concern for HIV-infected sickle cell patients, with a multifaceted impact on their overall health and quality of life. The interplay of chronic conditions, such as HIV and sickle cell disease, complicates the clinical presentation and management of metabolic syndrome, requiring a comprehensive approach that addresses both metabolic and psychosocial factors. This review highlights the prevalence, pathophysiology, clinical manifestations, and management strategies for metabolic syndrome in this unique population, emphasizing the need for early detection and intervention. Despite the progress made in understanding and managing metabolic syndrome, several challenges remain, including issues related to diagnosis, socioeconomic barriers, and the need for individualized care. Addressing these challenges will require a concerted effort from healthcare providers, researchers, and policymakers. Future research should focus on elucidating the underlying mechanisms of metabolic syndrome in HIV-infected sickle cell patients and exploring innovative interventions tailored to their specific needs.

Conflict of Interest: Author declares no potential conflict of interest with respect to the contents, authorship, and/or publication of this article.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting in this paper are available in the cited references.

Ethics approval: Not applicable.

References

1. Owusu ED, Visser BJ, Nagel IM, Mens PF, Grobusch MP. The interaction between sickle cell disease and HIV infection: a systematic review. *Clinical Infectious Diseases*. 2015; 60(4):612-626. <https://doi.org/10.1093/cid/ciu832> PMID:25344542
2. Boateng LA, Ngoma AM, Bates I, Schonewille H. Red blood cell alloimmunization in transfused patients with sickle cell disease in sub-Saharan Africa; a systematic review and meta-analysis. *Transfusion Medicine Reviews*. 2019; 33(3):162-169. <https://doi.org/10.1016/j.tmr.2019.06.003> PMID:31345590
3. Ola B, Olushola O, Ebenso B, Berghs M. Sickle Cell Disease and Its Psychosocial Burdens in Africa. *InSickle Cell Disease in Sub-Saharan Africa* 2024: 67-80. Routledge. <https://doi.org/10.4324/9781003467748-7>
4. Obeagu EI, Reducing Hospitalization Rates: The Preventive Benefits of Blood Transfusions in HIV Care, *International Journal of Medical Sciences and Pharma Research*, 2024;10(3):29-34 <https://doi.org/10.22270/ijmspr.v10i3.111>
5. Ochocinski D, Dalal M, Black LV, Carr S, Lew J, Sullivan K, Kissoon N. Life-threatening infectious complications in sickle cell disease: a concise narrative review. *Frontiers in Pediatrics*. 2020; 8:38. <https://doi.org/10.3389/fped.2020.00038> PMID:32154192 PMCID:PMC7044152
6. Obeagu EI, Obeagu GU, Okwuanaso CB. Optimizing Immune Health in HIV Patients through Nutrition: A Review. *Elite Journal of Immunology*, 2024; 2(1): 14-33
7. Obeagu EI, Obeagu GU. Platelet Distribution Width (PDW) as a Prognostic Marker for Anemia Severity in HIV Patients: A Comprehensive Review. *Journal home page: http://www.journalijiar.com*;12(01).
8. Obeagu EI, Ubosi NI, Obeagu GU, Akram M. Early Infant Diagnosis: Key to Breaking the Chain of HIV Transmission. *Elite Journal of Public Health*, 2024; 2 (1): 52-61
9. Obeagu EI, Obeagu GU. Hematocrit Fluctuations in HIV Patients Co-infected with Malaria Parasites: A Comprehensive Review. *Int. J. Curr. Res. Med. Sci.* 2024; 10(1):25-36. <https://doi.org/10.22270/ijmspr.v10i2.95>
10. Obeagu EI, Obeagu GU. Transfusion Therapy in HIV: Risk Mitigation and Benefits for Improved Patient Outcomes. *Asian J Dental Health Sci*, 2024; 4(1):32-7. <https://doi.org/10.22270/ajdhs.v4i1.62>
11. Obeagu EI, Obeagu GU. Advancements in HIV Prevention: Africa's Trailblazing Initiatives and Breakthroughs. *Elite Journal of Public Health*, 2024; 2 (1): 52-63
12. Obeagu EI, Obeagu GU. Optimizing Blood Transfusion Protocols for Breast Cancer Patients Living with HIV: A Comprehensive Review. *Elite Journal of Nursing and Health Science*, 2024; 2(2):1-17
13. Obeagu EI, Obeagu GU. Understanding ART and Platelet Functionality: Implications for HIV Patients. *Elite Journal of HIV*, 2024; 2(2): 60-73 1
14. Obeagu EI, Obeagu GU. Hematologic Considerations in Breast Cancer Patients with HIV: Insights into Blood Transfusion Strategies. *Elite Journal of Health Science*, 2024; 2(2): 20- 35
15. Obeagu EI, Obeagu GU. Impact of Maternal Eosinophils on Neonatal Immunity in HIV-Exposed Infants: A Review. *Elite Journal of Immunology*, 2024; 2(3): 1-18 <https://doi.org/10.22270/ajdhs.v4i2.82>
16. Obeagu EI, Obeagu GU, Obiezu J, Ezeonwumelu C, Ogunnaya FU, Ngwoke AO, Emeka-Obi OR, Ugwu OP. Hematologic Support in HIV Patients: Blood Transfusion Strategies and Immunological Considerations. *Newport International Journal of Biological and Applied Sciences (NIJBAS)* 2023. <http://hdl.handle.net/20.500.12493/14626>
17. Ntsekhe M, Baker JV. Cardiovascular disease among persons living with HIV: new insights into pathogenesis and clinical manifestations in a global context. *Circulation*. 2023; 147(1):83-100. <https://doi.org/10.1161/CIRCULATIONAHA.122.057443> PMID:36576956
18. Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and its impact on atherosclerotic cardiovascular disease. *Circulation research*. 2024; 134(11):1515-1545 <https://doi.org/10.1161/CIRCRESAHA.124.323891> PMID:38781301 PMCID:PMC11122788
19. Hmiel L, Zhang S, Obare LM, Santana MA, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and immune mechanisms for atherosclerotic cardiovascular disease in HIV. *International journal of molecular sciences*. 2024; 25(13):7266. <https://doi.org/10.3390/ijms25137266> PMID:39000373 PMCID:PMC11242562
20. Obeagu EI, Obeagu GU. Platelet Aberrations in HIV Patients: Assessing Impacts of ART. *Elite Journal of Haematology*, 2024; 2(3): 10-24
21. Obeagu EI, Obeagu GU. Harnessing B Cell Responses for Personalized Approaches in HIV Management. *Elite Journal of Immunology*, 2024; 2(2): 15-28
22. Belisário AR, Blatytá PF, Vivanco D, Oliveira CD, Carneiro-Proietti AB, Sabino EC, de Almeida-Neto C, Loureiro P, Máximo C, de Oliveira Garcia Mateos S, Flor-Park MV. Association of HIV infection with clinical and laboratory characteristics of sickle cell disease. *BMC Infectious Diseases*. 2020; 20(1):638. <https://doi.org/10.1186/s12879-020-05366-z> PMID:32854639 PMCID:PMC7457248
23. Obeagu EI, Addressing Sleep Disturbances: Blood Transfusions and Improved Sleep Patterns in HIV Patients, *International Journal of*

Medical Sciences and Pharma Research, 2024;10(3):43-48
<https://doi.org/10.22270/ijmspr.v10i3.113>

24. Gill AF, Ahsan MH, Lackner AA, Veazey RS. Hematologic abnormalities associated with simian immunodeficiency virus (SIV) infection mimic those in HIV infection. *Journal of Medical Primatology*. 2012; 41(3):214-224.
<https://doi.org/10.1111/j.1600-0684.2012.00543.x>
 PMid:22620272 PMCid:PMC3367385

25. Nourae M, Nekhai S, Gordeuk VR. Sickle cell disease is associated with decreased HIV but higher HBV and HCV comorbidities in US hospital discharge records: a cross-sectional study. *Sexually transmitted infections*. 2012; 88(7):528-533.
<https://doi.org/10.1136/sextrans-2011-050459> PMid:22628662
 PMCid:PMC3456988

26. Obeagu EI, Obeagu GU. Hematological Changes Following Blood Transfusion in Young Children with Severe Malaria and HIV: A Critical Review. *Elite Journal of Laboratory Medicine*. 2024; 2(1):33-45.

27. Obeagu EI, Obeagu GU. The Role of L-selectin in Tuberculosis and HIV Coinfection: Implications for Disease Diagnosis and Management. *Elite Journal of Public Health*, 2024; 2 (1): 35-51

28. Obeagu EI, Obeagu GU. Unraveling the Role of Eosinophil Extracellular Traps (EETs) in HIV-Infected Pregnant Women: A Review. *Elite Journal of Nursing and Health Science*, 2024; 2(3): 84-99

29. Obeagu EI, Obeagu GU. Unveiling the Role of Innate Immune Activation in Pediatric HIV: A Review. *Elite Journal of Immunology*, 2024; 2(3): 33-44

30. Obeagu EI, Obeagu, GU. Impact of Blood Transfusion on Viral Load Dynamics in HIVPositive Neonates with Severe Malaria: A Review. *Elite Journal of Scientific Research and Review*, 2024; 2(1): 42-60

31. Obeagu EI, Youth-Friendly HIV Prevention: Tailoring Interventions for Young Populations, *International Journal of Medical Sciences and Pharma Research*, 2024;10(4):62-67.
<https://doi.org/10.22270/ijmspr.v10i4.125>

32. Obeagu EI, Faith-based initiatives, HIV awareness, religious communities, health education, stigma reduction, *International Journal of Medical Sciences and Pharma Research*, 2024;10(4):74-79 <https://doi.org/10.22270/ijmspr.v10i4.127>

33. Obeagu EI, Obeagu GU. P-Selectin Expression in HIV-Associated Coagulopathy: Implications for Treatment. *Elite Journal of Haematology*, 2024; 2(3): 25-41

34. Obeagu EI, Obeagu GU. P-Selectin and Immune Activation in HIV: Clinical Implications. *Elite Journal of Health Science*, 2024; 2(2): 16-29

35. Obeagu EI, Amaeze AA, Ogbu ISI, Obeagu GU. B Cell Deficiency and Implications in HIV Pathogenesis: Unraveling the Complex Interplay. *Elite Journal of Nursing and Health Science*, 2024; 2(2): 33-46

36. Obeagu EI, Obeagu, GU. Platelet Dysfunction in HIV Patients: Assessing ART Risks. *Elite Journal of Scientific Research and Review*, 2024; 2(1): 1-16

37. Kibaru EG, Nduati R, Wamalwa D, Kariuki N. Impact of highly active antiretroviral therapy on hematological indices among HIV-1 infected children at Kenyatta National Hospital-Kenya:
 retrospective study. AIDS research and therapy. 2015; 12:1-8.
<https://doi.org/10.1186/s12981-015-0069-4> PMid:26279668
 PMCid:PMC4537535

38. Enawgaw B, Alem M, Addis Z, Melku M. Determination of hematological and immunological parameters among HIV positive patients taking highly active antiretroviral treatment and treatment naïve in the antiretroviral therapy clinic of Gondar University Hospital, Gondar, Northwest Ethiopia: a comparative cross-sectional study. *BMC hematology*. 2014; 14:1-7.
<https://doi.org/10.1186/2052-1839-14-8> PMid:24666771
 PMCid:PMC3994311

39. Gudina A, Wordofa M, Urgessa F. Immuno-hematological parameters among adult HIV patients before and after initiation of Dolutegravir based antiretroviral therapy, Addis Ababa, Ethiopia. *Plos one*. 2024; 19(10):e0310239.
<https://doi.org/10.1371/journal.pone.0310239> PMid:39480901
 PMCid:PMC11527299

40. Geletaw T, Tadesse MZ, Demisse AG. Hematologic abnormalities and associated factors among HIV infected children pre-and post-antiretroviral treatment, North West Ethiopia. *Journal of blood medicine*. 2017:99-105. <https://doi.org/10.2147/JBM.S137067> PMid:28831276 PMCid:PMC5552149

41. Jegede FE, Oyeyi TI, Abdulrahman SA, Mbah HA, Badru T, Agbakwuru C, Adedokun O. Effect of HIV and malaria parasites co-infection on immune-hematological profiles among patients attending anti-retroviral treatment (ART) clinic in Infectious Disease Hospital Kano, Nigeria. *PLoS One*. 2017; 12(3):e0174233.
<https://doi.org/10.1371/journal.pone.0174233> PMid:28346490
 PMCid:PMC5367709

42. Obeagu EI, Obeagu GU. ART and Platelet Dynamics: Assessing Implications for HIV Patient Care. *Elite Journal of Haematology*. 2024; 2(4):68-85.

43. Obeagu EI, Ayogu EE, Obeagu GU. Impact on Viral Load Dynamics: Understanding the Interplay between Blood Transfusion and Antiretroviral Therapy in HIV Management. *Elite Journal of Nursing and Health Science*. 2024;2(2):5-15.

44. Ciccacci F, Lucaroni F, Latagliata R, Morciano L, Mondlane E, Balama M, Tembo D, Gondwe J, Orlando S, Palombi L, Marazzi MC. Hematologic alterations and early mortality in a cohort of HIV positive African patients. *PLoS One*. 2020; 15(11):e0242068.
<https://doi.org/10.1371/journal.pone.0242068> PMid:33170905
 PMCid:PMC7654783

45. Ashenafi G, Tibebu M, Tilahun D, Tsegaye A. Immunohematological Outcome Among Adult HIV Patients Taking Highly Active Antiretroviral Therapy for at Least Six Months in Yabelo Hospital, Borana, Ethiopia. *Journal of Blood Medicine*. 2023:543-554.
<https://doi.org/10.2147/JBM.S419414> PMid:37881654
 PMCid:PMC10595970

46. Obeagu EI, Goryacheva OG. The Role of Inflammation in HIV and Sickle Cell Disease Co-Morbidity. *Lifeline HIV*, 2025; 3(1): 1-12

47. Obeagu EI, Goryacheva OG. Oxidative Stress in HIV and Sickle Cell Disease: A Double Burden. *Lifeline HIV*, 2025; 3(1): 13-24

48. Obeagu EI, Goryacheva OG. HIV and Sickle Cell Disease: A Focus on Liver Dysfunction. *Lifeline HIV*, 2025; 3(1): 25-40