ASIAN JOURNAL OF DENTAL AND HEALTH SCIENCES (AJMS) DIFFUL MALINE AND EAST SCIENCES

Available online at ajdhs.com

Asian Journal of Dental and Health Sciences

Open Access to Dental and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Research Article

Comparative Evaluation of Hemostatic Gel vs Gelatin Sponge on Bleeding and Pain After Primary Teeth Extraction: An In-vivo Comparative Study

Singh Utkarsh 1* , Gupta Sonal 2 , Saket Antra 1 , Pathak Shalu 3 , Abraham Nayana 3 ,

- ¹ JR3, Department of Pediatrics & Preventive Dentistry, KD Dental College & Hospital, Mathura
- ² HOD & Professor, Department of Pediatrics & Preventive Dentistry, KD Dental College & Hospital, Mathura
- ³ JR2, Department of Pediatrics & Preventive Dentistry, KD Dental College & Hospital, Mathura

Article Info:

Article History:

Received 02 Dec 2024 Reviewed 06 Jan 2025 Accepted 31 Jan 2025 Published 15 March 2025

Cite this article as:

Singh U, Gupta S, Saket A, Pathak S, Abraham N, Comparative Evaluation of Hemostatic Gel vs Gelatin Sponge on Bleeding and Pain After Primary Teeth Extraction: An In-vivo Comparative Study, Asian Journal of Dental and Health Sciences. 2025; 5(1):58-66 DOI:

http://dx.doi.org/10.22270/ajdhs.v5i1.124

*Address for Correspondence:

Singh Utkarsh, JR3, Department of Pediatrics & Preventive Dentistry, KD Dental College & Hospital, Mathura

Abstract

Background- In pediatric dental practice, extraction is one of the common procedures whether it's a case of over-retained deciduous teeth or carious and traumatic teeth with poor prognosis. In precooperative patients or patients with special health care needs, post extraction bleeding must be managed very effectively and quickly too, as such patients are unable to follow the post-extraction pack instructions properly. Hence, aim of this study was to compare the efficacy of hemostatic gel and gelatin sponge on post-extraction bleeding and pain following extraction of primary teeth and whether the root length of the primary teeth draws any impact over the post-extraction bleeding time and flow.

Materials & Methodology- It was a prospective, randomised clinical trial of sample size 20 teeth in each group. Inclusion criteria were ASA class-I patients in the age group 6-12 years, patients with at least 1 primary tooth to be extracted under LA local infiltration. After extraction, a pressure pack of normal saline soaked gauge was given for 2 minutes and then hemostatic agent was applied as per the groups allocated either hemostatic gel or gelatin sponge to the extraction socket.

Results- Gelatin sponge performed better in controlling the bleeding from extraction socket at 5 minutes and 10 minutes interval as the mean data of bleeding code was statistically significant but it was not significant at 15 minutes interval means both the material performed equally better at the end of 15 minutes in controlling bleeding.

Conclusion- Placing Gelatin sponge pack post primary teeth extraction significantly reduces the bleeding time at 5 minutes and 10 minutes interval and hastens the blood clot in comparison with hemostatic gel.

Keywords- Post-Extraction Bleeding, Gelatin Sponge, Hemostatic Gel

INTRODUCTION

In pediatric dental practice, extraction is one of the common procedures whether it's a case of over-retained deciduous teeth or carious and traumatic teeth with poor prognosis. Post-extraction bleeding following extraction is a well identified and frequent complication which causes several difficulties like stress, pain & agony to the patients and apprehension to the care-takers as well. 1 Hemophobia is the fear of blood which may instills a negative attitude in pediatric patients if doesn't control adequately and quickly following the extraction. Post-Extraction Bleeding (PEB) can be defined as obvious evidence of bleeding beyond the pressure pack time limit. ² This PEB may interfere in moisture sensitive procedures like restoration and cementation prolonging the chair-side and anesthesia time. This breakthrough bleeding may require hemostatic treatment, and emergency intervention in severe cases. In a study conducted by Henderson et al 3, it was concluded that total blood loss ranged from 2.5-57mL in extraction of primary teeth. PEB depends upon the number of teeth extracted, the pathological status of the teeth, the length of the root preserved and underlying systemic diseases of the patients like bleeding or clotting disorders and liver diseases.

In pre-cooperative patients or patients with special health care needs, post extraction bleeding must be managed very effectively and quickly too, as such patients are unable to follow the post-extraction pack instructions properly.

Management of PEB includes both local as well as systemic measures. Local methods of controlling PEB are common saline pressure pack, sutures, acrylic surgical splints, and local hemostatic agents like oxidized cellulose, resorbable gelatin sponge, bone wax, calcium alginate, tannic acid, and hemocoagulase. 4-5

Systemic measures include oral or parenteral administration of anti-fibrinolytic agents like tranexamic acid and α -amino caproic acid.

[58] AJDHS.COM

Ideal properties of a hemostatic agents include lightness, stability, and the ability to be easily inserted into the bleeding site. It should not cause tissue irritation or destruction, must not get dissolved in the blood and can be easily removed after the arrest of the bleeding or whenever required. ⁶

Gelatin sponge is one of the commonly used hemostatic agents in oral surgical procedure which has property to swell up and arrest the bleeding by compressing the blood vessels.⁷ Hemostatic gel typically contains Aluminium Chloride, glycerine and purified water are being used in dentistry for arresting bleeding during minor gingival retraction procedures and treating pulpal bleeding during pulp therapy. There have been various studies conducted so far to evaluate the efficacy of gelatin sponge and resorbable packs after extraction of primary teeth in patients with bleeding disorder and anti-platelet therapy, but, there is a scarcity of literature in evaluating the efficacy of gelatin sponge and hemostatic gel in bleeding control following extraction of primary teeth. Hence, aim of this study was to compare the efficacy of hemostatic gel and gelatin sponge on post-extraction bleeding and pain following extraction of primary teeth and whether the root length of the primary teeth draws any impact over the post-extraction bleeding time and flow.

MATERIALS AND METHODOLOGY

It was a prospective, randomised clinical trial of sample size 20 teeth in each group. Inclusion criteria were ASA class-I patients in the age group 6-12 years, patients with at least 1 primary tooth to be extracted under LA local infiltration. Exclusion criteria were patients with any systemic or bleeding disorders or extraction requiring surgical procedures like gingival reflection or elevation and pressure packs dislodged during 15 minutes postextraction. Informed consents were obtained from each child's legal parent or guardian. Each patient was randomly assigned to one of two study groups which after the extraction supposed to receive the Group I-Gelatin sponge (Gelatino^R Gamma Sterile, Ready to Use) and Group II- Hemostatic Gel (Waldent). Tooth extractions were performed using forceps after local infiltration of Local Anesthesia and retraction of attached gingiva.

Figure 1: Gelatin Sponge

Figure 2: Hemostatic Gel

Figure 3: Armamentarium

Pulse rate and oxygen saturation was recorded using pulse oximeter prior to LA administration and 30 minutes after extraction to evaluate the difference in the patient's apprehension on using these two different packs.

Anxiety and pain level on the patients were recorded using Facial Image Scale prior to LA administration and 1

hour post extraction to compare if there is any difference if these two different post-extraction packs.

Root resorption stages of the tooth to be extracted was evaluated using radiographs and code was assigned using modified Fanning Scale for root resorption.

Stage	Designation for this study	Diagram
Root intact	0	
Root shows blunting or rounding at apex	1	Res _i
Root resorbed 1/4	2	Res _{1/4}

[59] AJDHS.COM

Root resorbed 1/3	3	Res _{Ms}
Root resorbed 1/2	4	Res _{1/2}
Root resorbed 2/3	5	Res _{E/s}
Root resorbed 3/4	6	Res _{3/4}
Root entirely resorbed	7	Res.

After extraction, a pressure pack of normal saline soaked gauge was given for 2 minutes and then hemostatic agent was applied as per the groups allocated either hemostatic gel or gelatin sponge to the extraction socket.

Figure 4: Placement of hemostatic gel in extraction socket

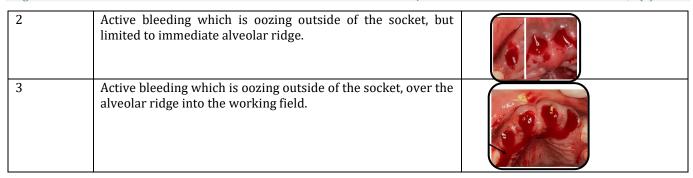


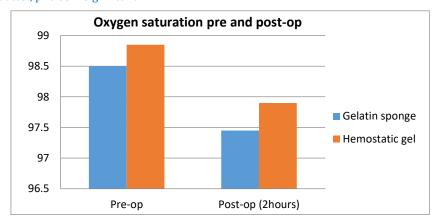
Figure 5: Placement of gelatin sponge in extraction socket

At 5 minutes, 10 minutes, and 15 minutes post-extraction, bleeding was scored according to a scale developed by Shayna Mattox et al. Existing blood, if any, was wiped using gauge and the socket was observed for 3 seconds prior to rating each socket.

Code	Description	Diagram
0	No active bleeding/ Fully clotted	
1	Active bleeding which fills the socket, but no oozing outside of the socket onto the alveolar ridge.	

[60] AJDHS.COM

At 15 minutes, it was noted if any portion of hemostatic agent was completely removed from the socket or not and if completely removed the sample was excluded from the study. After 15 minutes, a saline soaked gauge was placed in the socket for another 15minutes to avoid spitting or chewing anything by the child.

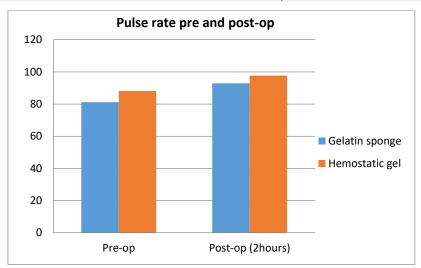

RESULTS

Data were entered in Microsoft Excel Version 2012 and SPSS software version 20.0 and following results were obtained.

1. Comparison of Oxygen Saturartion pre and post extraction (After 30 min) between Gelatin Sponge and Hemostatic Gel

Time	Group	Mean oxyger saturation	Std. Deviation	Mean diff	T value	P value
Pre-op	Gelatin sponge	98.50	1.606	350	856	.39
	Hemostatic gel	98.85	.875			
Post-op (30 min)	Gelatin sponge	97.45	1.849	450	931	.35
	Hemostatic gel	97.90	1.119			

Test used- independent t test, p>0.05 insignificant

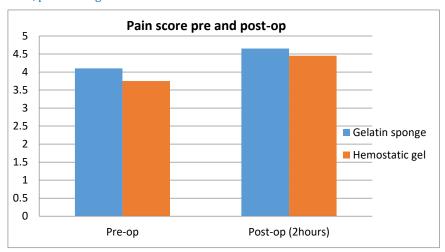

Mean \pm SD of oxygen saturation at pre-op in gelatin sponge and hemostatic gel was 98.50 ± 1.606 and $98.85\pm.875$ while at post-op it was 97.45 ± 1.849 and 97.90 ± 1.119 respectively respectively. Results were found to be statistically insignificant

2. Comparison of Mean pulse rate pre and post extraction (After 30 min) between Gelatin Sponge and Hemostatic Gel

Time	Group			Mean diff	T value	pvalue
		Mean pulse rate	Std. Deviation			
Pre-op	Gelatin sponge	81.15	15.500	-7.00	-1.203	.23
	Hemostatic gel	88.15	20.914			
Post-op	Gelatin sponge	92.85	7.989	-4.850	-1.573	.12
(After 30 min)						
	Hemostatic gel	97.70	11.239			

Test used- independent t test, p>0.05 insignificant

[61] AJDHS.COM



Mean \pm SD of pulse rate at pre-op in gelatin sponge and hemostatic gel was 81.15 ± 15.500 and 88.15 ± 20.914 respectively and post-op was 92.85 ± 7.989 and 97.70 ± 11.239 respectively. Results were found to be statistically insignificant.

3. Comparison of Pain perception pre and post extraction (After 2 hours) between Gelatin Sponge and Hemostatic Gel

Time	Group	Mean pain score	Std. Deviation	Mean diff	T value	P value
Pre-op	Gelatin sponge	4.10	.718	.350	1.406	.16
	Hemostatic gel	3.75	.851			
Post-op	Gelatin sponge	4.65	.489	.200	1.265	.21
(After 1 Hour)	Hemostatic gel	4.45	.510	1		

Test used- independent t test, p>0.05 insignificant

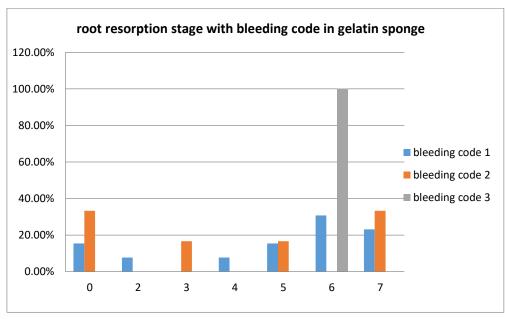
Mean \pm SD of pain score at pre-op in gelatin sponge and hemostatic gel was $4.10\pm.718$ and $3.75\pm.851$ respectively and post-op was $4.10\pm.718$ and $3.75\pm.851$ respectively. Results were found to be statistically insignificant

4. Comparison of Bleeding at 5 min, 10 min and 15 min post extraction between Gelatin Sponge and Hemostatic Gel

Time	Group	Mean bleeding code	Std. Deviation	Mean diff	T value	P value
5 min	Gelatin sponge	1.40	.598	600	-2.854	.007**
	Hemostatic gel	2.00	.725			
10 min	Gelatin sponge	.60	.598	550	-2.437	.020*
	Hemostatic gel	1.15	.813			
15 min	Gelatin sponge	.05	.224	150	-1.435	.16
	Hemostatic gel	.20	.410			

Test used- independent t test, p*<0.05 significant and p>0.05 insignificant

[62] AJDHS.COM

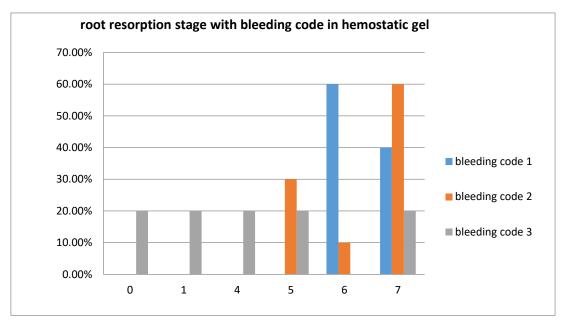


Mean ±SD of bleeding code at 5 min, 10 min and 15min in gelatin sponge and hemostatic gel was 1.40±.598 and 2.00±.725, 60±.598 and 1.15±.813 and 05±.224 and .20±.410 respectively. Results were found to be statistically significant when comparing gelatin sponge and hemostatic gel of bleeding code at 5 min and 10min but insignificant at 15min.

5. Comparison of bleeding code at 5 min with root resorption stage in gelatin sponge

			of Bleeding code		Total	Chi value	P value
gelatin sponge		code 1	code 2	code 3			
0		15.4%	33.3%	0	20%	8.803	.72
2		7.7%	0.0%	0.0%	5.0%		
3		0.0%	16.7%	0.0%	5.0%		
4		7.7%	0.0%	0.0%	5.0%		
5		15.4%	16.7%	0.0%	15.0%		
6		30.8%	0.0%	100.0%	25.0%		
7		23.1%	33.3%	0.0%	25.0%		
Total		100.0%	100.0%	100.0%	100.0%		

Test used- chi square, p>0.05 insignificant


Results were found to be statistically insignificant when comparing bleeding with root resorption stage in gelatin sponge.

[63] AJDHS.COM

6. Comparison of bleeding code with root resorption stage in hemostatic gel

Root resorption stage of	Bleed	Bleeding code		Total	Chi value	P value
hemostatic gel	code 1	Code 2	code 3			
0	0.0%	0.0%	20.0%	5.0%	17.222	.07
1	0.0%	0.0%	20.0%	5.0%		
4	0.0%	0.0%	20.0%	5.0%		
5	0.0%	30.0%	20.0%	20.0%		
6	60.0%	10.0%	0.0%	20.0%		
7	40.0%	60.0%	20.0%	45.0%		
Total	100.0%	100.0%	100.0%	100.0%		

Test used- chi square, p>0.05 insignificant

Results were found to be statistically insignificant when comparing bleeding with root resorption stage in gelatin sponge.

DISCUSSION

Extraction of primary teeth is a common procedure encountered in routine pediatric dental practice. Reason for primary teeth extraction include trauma, serial extraction for interceptive orthodontics, over-retained teeth, grossly decayed teeth which can't be restored or treated endodontically.8 After primary tooth extraction, a gauze pack is placed over the socket and patient is directed to bite on the pack for half an hour, exerting firm even pressure. Pre-cooperative children and those with intellectual disabilities don't comply with the pressure packs advice and they tend to remove the pack, before the time of pressure pack retention lasts. Due to lack of cognitive development in such patients, there is search of a proper hemostatic agent since long times that too in primary extraction socket, to hasten the clotting time and reduction in pressure packs timing as well. Many hemostatic agents like gelatin sponge, gelfoam (Gelatin sponge with glutaraldehyde), hemostatic gel and snake venom (batroxobin) 10 have been used as post-extraction hemostatic agent but mostly in cases with bleeding and clotting disorders, such patients require additional care to avoid excessive bleeding.

Gelatin sponge is a water insoluble, resorbable material which is flexible in nature and made from animal skin. ^[7] It is hemostatic in nature and can be used to control bleeding after exodontia. ¹¹ It can be used dry or in combination with saline solution. The mechanism behind using the sponge is water absorption and formation of clots, protecting the wound, reducing complications and hastening recovery. ¹² Mahmaudi A et al (2023) advocated the use of gelatin based dental sponge in primary molar extraction in order to reduce bleeding pain and post-operative infection. ¹³ Similarly, in a study conducted by Pattabhi A et al (2024), ¹⁴ they showed that using gelatin sponge in the extraction sockets of impacted third molars, when excessive bleeding is not present, reduces postoperative pain.

Hemostatic gel basically contains Aluminim Chloride and Ferric Sulfate which acts by constricting blood vessels and helping in formation of clot. ¹⁵ In a systemic review

[64] AJDHS.COM

by Gupta G et al (2018) ⁴, clinical outcomes of topical hemocoagulase was compared with placebo in extraction socket sites of adults and found that topical hemocoagulase led to a significant differences in bleeding stoppage time, pain, swelling, wound healing, and other postoperative complications. In adult patients, particularly after 3rd molar extractions, such hemostatic agents are used to avoid excessive bleeding as well as dry socket. There is paucity of literature regarding use of gelatin sponge and hemostatic gel in primary extraction socket. Thus, this study was carried out to compare the efficacy of bleeding control between gelatin sponge and hemostatic agent after primary teeth extrcation.

In this study, Gelatin sponge performed better in controlling the bleeding from extraction socket at 5 minutes and 10 minutes interval as the mean data of bleeding code was statistically significant but it was not significant at 15 minutes interval means both the material performed equally better at the end of 15 minutes in controlling bleeding. Gelatin sponge performed better due to its characteristic to effectively absorb blood at a rate that is 45 times its own weight. The hemostatic action is associated with the consistent porosity of the gelatin sponge, which facilitates platelet adhesion and subsequent degradation, resulting in the release of thrombokinase. It's neutral pH, rendering it compatible for moistening with thrombin or antibiotic solutions without compromising its integrity. 16 The result was in accordance with the conducted by Shayna Mattox et al $(2020)^{17}$, in which they concluded that use of hemostatic pack in maxillary primary extraction socket reduces the bleeding time at 5 minutes and 10 minutes post extraction compared to the controls.

In this study, we also tried to co-relate the difference in Oxygen saturation, pulse rate and pain perception of the children after use of these two haemostatic packs but result revealed that the difference in data were statistically insignificant. The data was not in accordance with the study by Shayna Mattox et al (2020) in which they claimed that there is an odd of increasing bleeding by 9% for increase in heart rate per beat every minutes.

In another parameter, the study also tried to rule out whether there is any impact of root resorption stages of primary teeth on post extraction bleeding in which results revealed the data as insignificant too which was in accordance with the Shayna Mattox et al's study. In this study, root resorption stage was evaluated using vertical resorption and lateral root resorption was not taken into account. Again, periodontal status and mobility of the primary tooth plays a significant role in the post-extraction bleeding which was not measured in the study and these might be the reason behind the data to be statistically insignificant.

This study had certain limitations like smaller sample size, location and status of root resorption stage of the tooth to be extracted and lack of blood profile tests for International Normalized Ratio (INR) prior to extraction. But, as this study is a pioneer in its own terms as one of the first study to be conducted in India as role of two different haemostatic packs after extraction of primary teeth, it will provide a backbone for further research and

studies specially in terms of providing a quick performing haemostatic pack after primary teeth extraction specially in un-cooperative patients and paediatric patients with intellectual disabilities.

Importance of the study

In uncooperative and intellectual disability patients, who don't comply with the post-extraction pack instructions, Gelatin sponge can be used on chair side to arrest the bleeding from primary teeth extraction site.

Use of gelatin sponge can be used in pediatric patients with bleeding disorders in order to hasten the clotting of primary teeth extraction bleeding site and to avoid post-operative complications.

CONCLUSION

Placing Gelatin sponge pack post primary teeth extraction significantly reduces the bleeding time at 5 minutes and 10 minutes interval and hastens the blood cloting in comparison with hemostatic gel.

There is no any difference in impact on oxygen saturation, pulse rate and pain perception by pediatric patients between these two hemostatic agents used.

Root resorption stage doesn't play a major role in postextraction bleeding in primary teeth.

Acknowledgements- None

Conflicts Of Interest- Nil

Author Contributions: All authors have equal contribution in the preparation of manuscript and compilation.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Ethical approval: Not applicable.

REFERENCES

- Kamoh A, Swantek J. Hemostasis in oral surgery. Oral Surgery for the General Dentist, An Issue of Dental Clinics. 2011 Oct 7;56(1):17. https://doi.org/10.1016/j.cden.2011.06.004 PMid:22117940
- 2. ELSEVIER PO. Tissue Renewal, Regeneration, and Repair.
- 3. Henderson NJ, Crawford PJ, Bell CN. Blood loss following extraction of deciduous teeth under general anaesthetic. Journal of the Royal College of Surgeons of Edinburgh. 1997 Oct 1;42(5):349-52.
- 4. Gupta G, Muthusekhar MR, Kumar SP. Efficacy of hemocoagulase as a topical hemostatic agent after dental extractions: a systematic review. Cureus. 2018 Mar;10(3). https://doi.org/10.7759/cureus.2398
- Nooh N, Abdullah WA, Grawish ME, Ramalingam S, Javed F, Al-Hezaimi K. The effects of surgicel and bone wax hemostatic agents on bone healing: An experimental study. Indian journal of orthopaedics. 2014 Jun;48:319-25.

[65] AJDHS.COM

- https://doi.org/10.4103/0019-5413.129451 PMid:24932041 PMCid:PMC4052034
- Irfan NI, Zubir AZ, Suwandi A, Haris MS, Jaswir I, Lestari W. Gelatin-based hemostatic agents for medical and dental application at a glance: A narrative literature review. The Saudi Dental Journal. 2022 Dec 1;34(8):699-707.
 https://doi.org/10.1016/j.sdentj.2022.11.007 PMid:36570577 PMCid:PMC9767835
- 7. Singh M, Bhate K, Kulkarni D, Santhosh Kumar SN, Kathariya R. The effect of alloplastic bone graft and absorbable gelatin sponge in prevention of periodontal defects on the distal aspect of mandibular second molars, after surgical removal of impacted mandibular third molar: a comparative prospective study. Journal of maxillofacial and oral surgery. 2015 Mar;14:101-6. https://doi.org/10.1007/s12663-013-0599-z PMid:25729233 PMCid:PMC4339342
- 8. Kay EJ. The reasons underlying the extraction of teeth in Scotland. Br. Dent. J.. 1986;160:287-90. https://doi.org/10.1038/sj.bdj.4805837 PMid:3457583
- 9. Textbook of Pediatric Dentistry 3rd Edition by Nikhil Marwah
- 10. Swamy DF, Barretto ES, Rodrigues JS. Effectiveness of topical haemocoagulase as a haemostatic agent in children undergoing extraction of primary teeth: a split-mouth, randomised, doubleblind, clinical trial. European Archives of Paediatric Dentistry. 2019 Aug 1;20:311-7. https://doi.org/10.1007/s40368-018-0406-0 PMid:30900152
- Cai, Y.; Lu, C. A clinical study of gelatamp colloidal silver gelatin sponge on preventing the complication of teeth extraction. West China J. Stomatol. 2008, 26, 519-521.

- 12. Guralnick,W.C.; Berg, L. Gelfoam in oral surgery: A report of two hundred fifty cases. Oral Surg. Oral Med. Oral Pathol. 1948, 1,632-639. https://doi.org/10.1016/0030-4220(48)90337-5 PMid:18869494
- 13. Mahmoudi A, Ghavimi MA, Maleki Dizaj S, Sharifi S, Sajjadi SS, Jamei Khosroshahi AR. Efficacy of a new hemostatic dental sponge in controlling bleeding, pain, and dry socket following mandibular posterior teeth extraction-a split-mouth randomized double-blind clinical trial. Journal of Clinical Medicine. 2023 Jul 10;12(14):4578. https://doi.org/10.3390/jcm12144578 PMid:37510692 PMCid:PMC10380399
- 14. Pattabhi A, Arun M, Murugesan K. EFFICACY OF ABSORBABLE SURGICAL GELATIN SPONGE POST SURGICAL EXTRACTION OF IMPACTED MANDIBULAR TEETH: A PROSPECTIVE SPLIT MOUTH COMPARATIVE STUDY. InObstetrics and Gynaecology Forum 2024 May 13 (Vol. 34, No. 2s, pp. 263-266).
- 15. Tarighi P, Khoroushi M. A review on common chemical hemostatic agents in restorative dentistry. Dental Research Journal. 2014 Jul;11(4):423.
- 16. Kan KW, Liu JKS, Lo ECM, Corbet EF, Leung WK. Residual periodontal defects distal to the mandibular second molar 6-36 months after impacted third molar extraction-A retrospective cross-sectional study of young adults. J Clin Periodontol. 2002;29:1004-1011. https://doi.org/10.1034/j.1600-051X.2002.291105.x PMid:12472993
- 17. Mattox SL. A Randomized Controlled Trial: Absorbable Hemostatic Pack Effect on Bleeding Time Following Extraction of Primary Maxillary Incisors (Master's thesis, The Ohio State University).

[66] AJDHS.COM