Available online at ajdhs.com

Asian Journal of Dental and Health Sciences

Open Access to Dental and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Review Article **Open Access**

Differential Diagnosis of Anemia in Pregnancy Using Mentzer Index: A Narrative

Emmanuel Ifeanyi Obeagu *

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Article Info:

Article History:

Received 10 Nov 2024 Reviewed 19 Dec 2024 Accepted 16 Jan 2025 Published 15 March 2025

Cite this article as:

Obeagu EI, Differential Diagnosis of Anemia in Pregnancy Using Mentzer Index: A Narrative Review, Asian Journal of Dental and Health Sciences. 2025; 5(1):34-39

DOI: http://dx.doi.org/10.22270/ajdhs.v5i1.117

Abstract

Anemia in pregnancy remains a significant global health concern, contributing to adverse maternal and fetal outcomes. Among its most common etiologies are iron-deficiency anemia (IDA) and thalassemia traits, both requiring distinct management strategies. The Mentzer Index, calculated as the ratio of Mean Corpuscular Volume (MCV) to Red Blood Cell (RBC) count, has emerged as a practical, cost-effective tool for differentiating between these conditions. This simple calculation leverages routine complete blood count (CBC) parameters, offering a quick and accessible approach to initial anemia diagnosis in prenatal care. This review explores the utility of the Mentzer Index in diagnosing anemia in pregnancy, focusing on its advantages and limitations. By distinguishing IDA from thalassemia traits, the index supports tailored interventions, minimizing complications such as iron overload or untreated anemia. Its integration into routine antenatal care is particularly beneficial in resource-limited settings, where advanced diagnostic modalities are often unavailable.

Keywords: Mentzer Index, anemia in pregnancy, iron-deficiency anemia, thalassemia traits, differential diagnosis

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Introduction

Anemia is a significant public health issue affecting approximately 40% of pregnant women worldwide. The condition is defined as a reduction in hemoglobin concentration below the threshold needed to meet the body's physiological requirements, leading to reduced oxygen delivery to tissues. Pregnant women are particularly vulnerable due to increased iron demands for maternal and fetal development, compounded by potential underlying genetic factors. Anemia during pregnancy is associated with serious maternal and fetal complications, including preterm delivery, low birth weight, and increased risk of maternal mortality. Identifying the underlying cause of anemia is crucial for its effective management and prevention of associated adverse outcomes.1-2 The most common causes of anemia in pregnancy are iron-deficiency anemia (IDA) and thalassemia traits. IDA, characterized by low iron stores and inadequate hemoglobin production, is primarily driven by poor dietary intake, malabsorption, or increased iron demands during pregnancy. Thalassemia traits, on the other hand, result from genetic mutations affecting hemoglobin synthesis, leading to microcytosis and varying degrees of anemia. conditions require different management emphasizing the need for accurate strategies, differential diagnosis to avoid inappropriate treatments that may worsen patient outcomes, such as unnecessary

iron supplementation in thalassemia.3 Differentiating IDA from thalassemia traits can be challenging due to overlapping clinical and laboratory features, such as microcytosis and hypochromia. Misdiagnosis can lead to ineffective or harmful treatment strategies. For instance, administering iron supplements to a patient with thalassemia traits may result in iron overload and exacerbate complications. Similarly, overlooking irondeficiency anemia in favor of thalassemia could lead to untreated anemia and its complications. Therefore, accurate and cost-effective diagnostic tools are essential, particularly in resource-limited settings where advanced testing methods like hemoglobin electrophoresis or genetic studies are not readily available.4

The Mentzer Index (MI), calculated as the ratio of Mean Corpuscular Volume (MCV) to Red Blood Cell (RBC) count, is a practical and widely used screening tool for distinguishing between IDA and thalassemia traits. Values greater than 13 typically suggest IDA, while values below 13 are indicative of thalassemia traits. This index leverages parameters obtained from a routine complete blood count (CBC), making it a low-cost and accessible method for initial anemia assessment. Its simplicity and applicability in diverse clinical settings have made it a valuable addition to prenatal care.⁵ In pregnant populations, the Mentzer Index plays a critical role in guiding anemia management, especially during

[34] AJDHS.COM routine antenatal visits. Early differentiation of anemia types enables timely and targeted interventions, reducing the risk of complications for both the mother and the fetus. Moreover, the Mentzer Index's reliance on basic CBC parameters aligns well with the resource constraints of many low- and middle-income countries, where advanced diagnostics may be unavailable. Despite these advantages, its application in pregnancy is not without limitations, as physiological changes during gestation can influence hematological parameters and affect the reliability of the index.6-7This review aims to examine the role of the Mentzer Index in the differential diagnosis of anemia in pregnancy, emphasizing its clinical utility, advantages, and limitations.

Etiologies of Anemia in Pregnancy

Anemia in pregnancy can arise from several underlying causes, with iron-deficiency anemia (IDA) and thalassemia traits being the most common. Identifying the specific etiology of anemia is crucial, as each type requires a distinct management approach. The primary causes of anemia during pregnancy include nutritional deficiencies, genetic factors, and other medical conditions that can affect the body's ability to produce or maintain red blood cells.⁸

1. Iron-Deficiency Anemia (IDA)

Iron-deficiency anemia is the most prevalent form of anemia during pregnancy. It occurs when the body lacks sufficient iron to produce hemoglobin, a key protein in red blood cells responsible for oxygen transport. Pregnancy increases iron requirements due to the growing fetus and placenta, increased blood volume, and the need to prepare for childbirth. If dietary intake is inadequate or absorption is impaired, it can lead to depleted iron stores, resulting in IDA. The hallmark of IDA is microcytic, hypochromic anemia, which can be detected through a routine blood test showing low hemoglobin levels, decreased mean corpuscular volume (MCV), and low ferritin levels.

2. Thalassemia Traits

Thalassemia, a genetic disorder affecting hemoglobin production, is another significant cause of anemia in pregnancy. In thalassemia, the body produces an abnormal form of hemoglobin due to mutations in the alpha or beta globin genes. Thalassemia traits are inherited and often go undiagnosed until an individual experiences symptoms, such as anemia during pregnancy. This condition typically results in mild microcytic anemia with normal or slightly elevated RBC count. However, it is distinguished from IDA by the absence of iron deficiency. Thalassemia traits are especially prevalent in populations of Mediterranean, Middle Eastern, African, and Southeast Asian descent.¹⁰

3. Anemia of Chronic Disease (ACD)

Anemia of chronic disease (ACD) is another potential cause of anemia in pregnancy, especially in women with pre-existing medical conditions such as chronic infections, inflammatory disorders, or kidney disease. This type of anemia is typically normocytic and normochromic, characterized by a normal MCV and

MCH, but a reduced hemoglobin level due to the body's response to chronic illness. During pregnancy, the increased inflammatory state and physiological changes can exacerbate ACD, making it an important consideration in the differential diagnosis of anemia.¹¹

4. Folate and Vitamin B12 Deficiency Anemia

Deficiencies in folate or vitamin B12 are another cause of anemia during pregnancy. Folate is essential for DNA synthesis and red blood cell production, and a deficiency can lead to megaloblastic anemia, characterized by large, immature red blood cells. Pregnant women are at higher risk of folate deficiency due to increased demand for folate during fetal development. Similarly, vitamin B12 deficiency can lead to similar megaloblastic anemia and may also cause neurological complications if left untreated. These deficiencies often result in symptoms of fatigue, pallor, and weakness, and can be confirmed by blood tests showing elevated mean corpuscular volume (MCV) and abnormal levels of folate or vitamin B12.¹²

5. Sickle Cell Disease

Sickle cell disease is a genetic disorder that affects the shape of red blood cells, making them rigid and sickle-shaped, leading to blocked blood flow, pain, and hemolysis. Pregnant women with sickle cell disease may experience anemia due to the rapid breakdown of these abnormally shaped cells. This form of anemia is typically normocytic but can be complicated by episodes of hemolysis and vaso-occlusive crises. Management of anemia in sickle cell disease requires careful monitoring, as iron supplementation is usually not indicated due to the risk of iron overload.¹³

6. Hemolytic Anemia

Hemolytic anemia can occur in pregnancy due to autoimmune diseases, infections, or certain medications that trigger the premature destruction of red blood cells. Conditions like autoimmune hemolytic anemia or malaria can lead to a significant reduction in red blood cell count, presenting as anemia. This condition can be diagnosed based on peripheral blood smear findings, showing fragmented red blood cells, and laboratory tests demonstrating elevated reticulocyte count, which indicates increased red blood cell production in response to hemolysis.¹⁴

7. Acute Blood Loss

Acute blood loss, often due to trauma, hemorrhage during delivery, or placental complications like placental abruption, is another cause of anemia in pregnancy. This form of anemia is typically normocytic and can cause a rapid decline in hemoglobin levels. Immediate medical intervention is required to stabilize the mother and fetus, and blood transfusion may be necessary depending on the severity of the blood loss. 15

8. Pregnancy-Related Hemodilution

During pregnancy, the body undergoes hemodilution due to the expansion of plasma volume, leading to a relative decrease in hemoglobin concentration. This dilution effect can sometimes mask underlying anemia,

[35] AJDHS.COM

particularly in the second and third trimesters. However, the physiological increase in blood volume is typically not sufficient to cause a significant drop in hemoglobin levels, and this condition resolves after delivery. It is important to differentiate hemodilution from actual anemia, as treatment strategies differ.¹⁶

The Role of Mentzer Index in Differential Diagnosis

Differentiating between the various causes of anemia in pregnancy is crucial for ensuring appropriate treatment and minimizing potential complications for both the mother and the fetus. Among the most common forms of anemia during pregnancy are iron-deficiency anemia (IDA) and thalassemia traits, both of which can present with similar clinical symptoms but require distinct management strategies. The Mentzer Index (MI) has emerged as a practical, cost-effective tool to assist clinicians in distinguishing between these two conditions, thereby enabling more accurate diagnoses and guiding subsequent treatment choices.¹⁷ Irondeficiency anemia and thalassemia traits share many clinical features, including fatigue, pallor, and mild microcytic anemia, making differential diagnosis challenging without appropriate diagnostic tools. The Mentzer Index helps to address this diagnostic challenge by using readily available CBC parameters. In IDA, iron deficiency impairs the ability of the body to produce sufficient hemoglobin, leading to reduced hemoglobin levels and smaller red blood cells (microcytosis). In thalassemia traits, however, the body compensates for defective hemoglobin production by increasing RBC count, although these cells remain small (microcytic). Thus, while both conditions exhibit microcytic anemia, the key difference is that IDA typically has a higher MCV-to-RBC ratio, whereas thalassemia traits feature a lower ratio.18

The use of the Mentzer Index in pregnancy is particularly valuable, as pregnant women are at increased risk for both IDA and thalassemia traits. Thalassemia traits, common in individuals Mediterranean, African, and Southeast Asian descent, may go undiagnosed until the woman presents with anemia during pregnancy. Differentiating between these conditions is essential because iron supplementation, a cornerstone of IDA management, can lead to iron overload and exacerbate complications in individuals with thalassemia traits. In such cases, early and accurate identification through the Mentzer Index can help prevent unnecessary iron supplementation, ensuring that patients receive the appropriate treatment for their condition.¹⁹ In many resource-limited settings, access to advanced diagnostic techniques, such as hemoglobin electrophoresis or genetic testing, is limited or unavailable. In these circumstances, the Mentzer Index provides a cost-effective and accessible tool for clinicians to differentiate between IDA and thalassemia traits. By using only routine CBC parameters, which are commonly available in most healthcare facilities, the Mentzer Index can help guide initial diagnosis and treatment decisions. This is particularly important in low-income countries or areas with high prevalence

rates of thalassemia, where healthcare resources may be stretched thin, and timely access to specialized tests may be difficult.²⁰

The simplicity of the Mentzer Index also makes it an attractive option for integration into routine prenatal care. During regular antenatal visits, pregnant women are routinely screened for anemia using CBC, and the Mentzer Index can be calculated easily from the results of these tests. In settings where time and resources are constrained, this simple calculation can serve as an invaluable first-line tool for the differential diagnosis of anemia, allowing clinicians to prioritize further investigation or intervention where necessary.²¹ Given the limitations of the Mentzer Index, it is crucial to use it in conjunction with other diagnostic tools for a more comprehensive assessment of anemia in pregnancy. Additional tests, such as measuring serum ferritin, transferrin saturation, or conducting hemoglobin electrophoresis, can help confirm the diagnosis of IDA or thalassemia traits. In cases where the Mentzer Index provides borderline or unclear results, supplementary tests can clarify the diagnosis, ensuring that appropriate treatment is provided. For example, serum ferritin is a key marker of iron stores and can help confirm whether a patient's anemia is due to iron deficiency, while hemoglobin electrophoresis can definitively identify thalassemia or other hemoglobinopathies.²²

Limitations and Challenges

Despite its utility in the differential diagnosis of anemia, particularly in distinguishing between iron-deficiency anemia (IDA) and thalassemia traits, the Mentzer Index (MI) has several limitations and challenges that must be considered when applying it in clinical practice, particularly in pregnancy.

1. Physiological Changes During Pregnancy

Pregnancy introduces physiological changes that can impact the hematological parameters used in the Mentzer Index calculation. For example, the increased plasma volume and hemodilution during pregnancy can lead to a lower hemoglobin concentration and RBC count, which may skew the results of the MI. This hemodilution effect can make it challenging to differentiate between iron-deficiency anemia and thalassemia traits, as both conditions may present with low RBC count and microcytic anemia. The standard MI values used to differentiate these conditions may not be applicable to pregnant women due to these physiological changes, which may necessitate further testing, such as ferritin levels or hemoglobin electrophoresis, to confirm the diagnosis.²³

2. Lack of Specificity in Mixed Anemia

The Mentzer Index is primarily effective in distinguishing between IDA and thalassemia traits, but it may not be as reliable when mixed forms of anemia are present. For instance, a patient may have both iron-deficiency anemia and thalassemia traits, which could lead to overlapping characteristics and result in ambiguous MI values. In such cases, the MI might not

[36] AJDHS.COM

provide a definitive diagnosis, leading to potential misinterpretation. Additionally, other causes of anemia, such as anemia of chronic disease (ACD) or folate and vitamin B12 deficiencies, can present with similar MCV and RBC count values, complicating the use of the Mentzer Index as a sole diagnostic tool.²⁴

3. Dependence on Accurate Laboratory Values

The accuracy of the Mentzer Index relies heavily on the quality of the underlying laboratory tests, specifically the measurement of Mean Corpuscular Volume (MCV) and Red Blood Cell (RBC) count. Errors in these tests, due to machine calibration, human error, or sample quality, can result in misleading MI values. Inadequate blood samples, variations in laboratory techniques, or the presence of certain factors, such as dehydration, can lead to inaccuracies in MCV or RBC count, thereby affecting the reliability of the MI in diagnosing anemia. This dependency on accurate laboratory values underscores the need for careful testing and interpretation, especially in the context of pregnancy, where numerous factors can influence blood test results.²⁵

4. Inability to Diagnose Other Hematological Disorders

While the Mentzer Index is helpful in distinguishing between IDA and thalassemia traits, it does not provide information about other types of anemia or underlying hematological disorders. Conditions such as sickle cell autoimmune hemolytic disease, anemia, megaloblastic anemia due to folate or vitamin B12 deficiency require additional diagnostic testing, such as hemoglobin electrophoresis, reticulocyte count, and vitamin assays, to confirm the diagnosis. The MI's limited scope may lead to an incomplete diagnostic picture if relied upon as the sole method of evaluation. In cases of complex or atypical anemia, further investigation is necessary to identify the root cause.²⁶

5. Influence of Hemoglobinopathies and Variants

populations with a high prevalence hemoglobinopathies, such as sickle cell disease, hemoglobin C, or other genetic variants, the Mentzer Index may be less reliable. Hemoglobinopathies can alter the RBC count, MCV, and other hematological parameters in ways that are not captured by the MI. For example, individuals with sickle cell disease or hemoglobin C disease may exhibit microcytic or normocytic anemia, which could lead misinterpretation of the MI and confusion with IDA or thalassemia. In these cases, additional diagnostic methods, such as hemoglobin electrophoresis or molecular testing, are required to accurately identify the condition.27

6. Limited Sensitivity in Pregnancy

The sensitivity of the Mentzer Index in detecting anemia in pregnant populations is lower compared to its performance in non-pregnant individuals. Pregnant women may present with various forms of anemia that do not conform strictly to the patterns seen in IDA or thalassemia, especially if there are complications such

as preeclampsia, gestational diabetes, or other medical conditions. These conditions can affect the MCV, RBC count, and other hematological parameters, leading to less accurate MI values. As a result, the MI may not always provide a clear or reliable distinction between different types of anemia in pregnant women, making the use of supplementary diagnostic tests essential.²⁰

7. Variations in Population-Specific Values

The cut-off values used for the Mentzer Index (typically MI <13 indicating thalassemia and MI >13 indicating IDA) are based on population studies and may not be universally applicable across all populations. Genetic and ethnic differences can influence MCV and RBC counts, meaning that the MI thresholds may vary in different geographic or demographic groups. For example, in populations with a high prevalence of thalassemia or other hemoglobinopathies, the MI cut-off may need to be adjusted to account for regional differences in hematological profiles. This variability in MI interpretation could lead to misdiagnoses if population-specific adjustments are not considered.²¹

Clinical Implications

The Mentzer Index (MI) offers significant clinical value in the diagnosis and management of anemia during pregnancy, particularly in distinguishing between iron-deficiency anemia (IDA) and thalassemia traits. However, its application must be carefully considered within the broader clinical context to ensure accurate diagnosis and effective treatment.

1. Early Differentiation Between IDA and Thalassemia Traits

One of the primary clinical implications of the Mentzer Index is its ability to assist in early differentiation between iron-deficiency anemia and thalassemia traits, which can present with similar symptoms of microcytic anemia. Iron-deficiency anemia, which is often due to inadequate iron intake or increased iron requirements pregnancy, responds well to supplementation. In contrast, thalassemia traits, which are genetic disorders affecting hemoglobin production, are not treated with iron and can actually be exacerbated by iron supplementation. The ability to differentiate between these two conditions using the MI can help prevent the inappropriate use of iron supplements, thereby avoiding potential complications like iron overload in patients with thalassemia traits. Accurate early diagnosis ensures that pregnant women receive the appropriate treatment tailored to their specific condition, reducing the risk of adverse outcomes for both the mother and the fetus.²²

2. Facilitating Cost-Effective Diagnosis in Resource-Limited Settings

In resource-limited settings, where access to advanced diagnostic tools such as hemoglobin electrophoresis or genetic screening may be unavailable, the Mentzer Index provides a cost-effective and easily accessible method for distinguishing between IDA and thalassemia traits. As it relies solely on parameters from a routine complete blood count (CBC), which is commonly

[37] AJDHS.COM

available even in settings with limited resources, the MI serves as a valuable first-line tool for clinical decision-making. In areas with a high prevalence of thalassemia traits, the MI can help healthcare providers promptly identify patients who may require further diagnostic testing, such as hemoglobin electrophoresis, while avoiding unnecessary interventions or misdiagnoses. This can lead to more efficient use of healthcare resources and better-targeted care for pregnant women with anemia.²³

3. Risk Stratification and Management Decisions

Accurate identification of the type of anemia in pregnancy can have significant implications for management decisions. For instance, IDA is typically treated with oral or intravenous iron supplementation, dietary adjustments, and in some cases, blood transfusions if the anemia is severe. On the other hand, thalassemia traits usually require no iron therapy, and management focuses on monitoring and ensuring that the patient does not receive excessive iron. Additionally, identifying thalassemia traits may prompt genetic counseling, as it has implications for the patient's offspring and the risk of having a child with thalassemia major. By using the MI to differentiate between these conditions, clinicians can tailor their management plans more effectively, improving maternal and fetal outcomes by ensuring the right interventions are implemented.²⁴

4. Prevention of Misdiagnosis and Over-Treatment

The clinical implications of misdiagnosing anemia are significant, especially in pregnancy, where both the mother and fetus are vulnerable. Misdiagnosis can lead to inappropriate treatments, such as the overuse of iron supplements in patients with thalassemia traits, potentially resulting in iron overload and other related complications, including organ damage. Conversely, failure to identify thalassemia traits could delay appropriate genetic counseling and interventions. By incorporating the Mentzer Index into clinical practice, healthcare providers can reduce the risk of overtreatment and prevent unnecessary interventions, ensuring that patients are not exposed to harmful therapies that do not address the underlying cause of anemia.²⁵

5. Guiding Prenatal Care and Monitoring

The Mentzer Index also plays a role in guiding the overall prenatal care and monitoring of pregnant women with anemia. Regular screening for anemia is a routine part of prenatal care, and the MI can help clinicians determine whether further investigation is necessary. For example, if the MI suggests the possibility of thalassemia traits, clinicians may recommend genetic testing or hemoglobin electrophoresis to confirm the diagnosis. If IDA is suspected, the focus will shift to iron supplementation and addressing dietary deficiencies. By using the MI as a screening tool, clinicians can more efficiently determine the appropriate next steps in managing anemia and provide personalized care for pregnant women. This proactive approach to monitoring can reduce the risk of complications, such as

preterm delivery, low birth weight, and fetal growth restriction, which are often associated with untreated anemia during pregnancy.²⁶

6. Ethical and Social Implications

The use of the Mentzer Index in pregnancy also carries ethical and social implications, particularly in populations where thalassemia traits are prevalent. In such populations, early identification of thalassemia traits allows for informed genetic counseling, which can help prospective parents understand the implications of carrier status and the risk of passing on thalassemia major to their children. This can lead to better reproductive decision-making and early interventions, such as prenatal diagnosis, in cases where both parents are carriers. However, this also raises ethical concerns about how genetic information is communicated to patients, particularly in settings where there may be limited understanding or stigma associated with certain genetic conditions. Healthcare providers must approach the use of the Mentzer Index and subsequent counseling with sensitivity, ensuring that patients receive appropriate support and information.²⁷

Conclusion

The Mentzer Index (MI) is a valuable diagnostic tool for the differential diagnosis of anemia in pregnancy, particularly in distinguishing between iron-deficiency anemia (IDA) and thalassemia traits. Its simplicity, costeffectiveness, and ease of use make it an essential tool in clinical practice, especially in resource-limited settings where advanced diagnostic techniques may not be readily available. The MI can assist healthcare providers in making informed decisions about the appropriate treatment, such as iron supplementation for IDA or avoiding iron therapy in individuals with thalassemia traits. This early differentiation helps to prevent the misuse of iron supplements, reducing the risk of iron overload and associated complications in pregnant women with thalassemia traits.

Conflict of Interest: Author declares no potential conflict of interest with respect to the contents, authorship, and/or publication of this article.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting in this paper are available in the cited references.

Ethics approval: Not applicable.

References

 Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, Ota E, Gilmour S, Shibuya K. Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis. The American journal of clinical nutrition. 2016; 103(2):495-504. https://doi.org/10.3945/ajcn.115.107896 PMid:26739036

[38] AJDHS.COM

- Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. Int J Curr Res Chem Pharm Sci. 2016;3(3):10-18. https://doi.org/10.22270/ijmspr.v10i2.95
- 3. Okamgba OC, Nwosu DC, Nwobodo EI, Agu GC, Ozims SJ, Obeagu EI, Ibanga IE, Obioma-Elemba IE, Ihekaire DE, Obasi CC, Amah HC. Iron Status of Pregnant and Post-Partum Women with Malaria Parasitaemia in Aba Abia State, Nigeria. Annals of Clinical and Laboratory Research. 2017;5(4):206.
- Petrakos G, Andriopoulos P, Tsironi M. Pregnancy in women with thalassemia: challenges and solutions. International journal of women's health. 2016:441-451. https://doi.org/10.2147/IJWH.S89308 PMid:27660493 PMCid:PMC5019437
- Obeagu EI, Adepoju OJ, Okafor CJ, Obeagu GU, Ibekwe AM, Okpala PU, Agu CC. Assessment of Haematological Changes in Pregnant Women of Ido, Ondo State, Nigeria. J Res Med Dent Sci. 2021 Apr;9(4):145-148.
- Agreen FC, Obeagu EI. Anaemia among pregnant women: A review of African pregnant teenagers. Journal of Public Health and Nutrition. 2023;6(1):138.
- Arora S, Rana D, Kolte S, Dawson L, Dhawan I. Validation of new indices for differentiation between iron deficiency anemia and beta thalessemia trait, a study in pregnant females. International Journal of Scientific Reports. 2018; 4(2):26. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20180394
- 8. Obeagu EI, Obeagu GU, Insights into Maternal Health: Mentzer Index for Early Anemia Detection, International Journal of Medical Sciences and Pharma Research, 2024; 10(4):44-49 https://doi.org/10.22270/ijmspr.v10i4.122
- Obeagu EI, Influence of Hemoglobin Variants on Vaso-Occlusive Phenomena in Sickle Cell Anemia: A Review, International Journal of Medical Sciences and Pharma Research, 2024;10(2):54-59 https://doi.org/10.22270/ijmspr.v10i2.104
- 10. Iolascon A, Andolfo I, Russo R, Sanchez M, Busti F, Swinkels D, Aguilar Martinez P, Bou-Fakhredin R, Muckenthaler MU, Unal S, Porto G. Recommendations for diagnosis, treatment, and prevention of iron deficiency and iron deficiency anemia. Hemasphere. 2024; 8(7):e108. https://doi.org/10.1002/hem3.108 PMid:39011129 PMCid:PMC11247274
- Obeagu EI, Obeagu GU, Chukwueze CM, Ikpenwa JN, Ramos GF. Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri metropolis. Madonna University journal of Medicine and Health Sciences ISSN: 2814-3035. 2022 Apr 19;2(2):1-9.
- Obeagu EI, Obeagu GU. Neonatal Outcomes in Children Born to Mothers with Severe Malaria, HIV, and Transfusion History: A Review. Elite Journal of Nursing and Health Science, 2024; 2(3): 38-58
- Sahli CA, Bibi A, Ouali F, Fredj SH, Dakhlaoui B, Othmani R, Laouini N, Jouini L, Ouenniche F, Siala H, Touhami I. Red cell indices: differentiation between β-thalassemia trait and iron deficiency anemia and application to sickle-cell disease and sickle-cell thalassemia. Clinical Chemistry and Laboratory Medicine (CCLM). 2013; 51(11):2115-24. https://doi.org/10.1515/cclm-2013-0354 PMid:23800659

- 14. Hoffmann JJ, Nabbe KC, van den Broek NM. Effect of age and gender on reference intervals of red blood cell distribution width (RDW) and mean red cell volume (MCV). Clinical Chemistry and Laboratory Medicine (CCLM). 2015; 53(12):2015-9. https://doi.org/10.1515/cclm-2015-0155 PMid:26536583
- 15. Miftahussurur M, Husada D, Ningtyas WS. Association Association Of Shine and Lal Index B-Thalassemia Trait Screening Results with Anaemia and Low Birth Weigh. International Journal of Nursing And Midwifery Science (IJNMS). 2023; 7(3):290-296. https://doi.org/10.29082/IJNMS/2023/Vol7/Iss3/543
- Shahid H, Saleem M, Naseer N, Tabussam S, Aziz A, Ullah S. Evaluation of Srivastava index to distinguishing Beta-Thalassemia Trait from Iron Deficiency. Pakistan Journal of Medical & Health Sciences. 2022;16(05):1225. https://doi.org/10.53350/pjmhs221651225
- Vehapoglu A, Ozgurhan G, Demir AD, Uzuner S, Nursoy MA, Turkmen S, Kacan A. Hematological indices for differential diagnosis of Beta thalassemia trait and iron deficiency anemia. Anemia. 2014; 2014(1):576738. https://doi.org/10.1155/2014/576738 PMid:24818016 PMCid:PMC4003757
- Urrechaga E. Discriminant value of% microcytic/% hypochromic ratio in the differential diagnosis of microcytic anemia. Clinical chemistry and laboratory medicine. 2008;46(12):1752-1758. https://doi.org/10.1515/CCLM.2008.355 PMid:19055451
- 19. Obeagu EI, Obeagu GU, Anemia in Pregnancy: Mentzer Index as a Predictor for Iron Supplementation Needs, International Journal of Medical Sciences and Pharma Research, 2024;10(4):39-43 https://doi.org/10.22270/ijmspr.v10i4.121
- Obeagu EI, Obeagu GU. Sickle cell anaemia in pregnancy: a review. International Research in Medical and Health Sciences. 2023 Jun 10;6(2):10-13. https://doi.org/10.22270/ijmspr.v10i2.103
- Obeagu EI, Ubosi NI, Uzoma G. Antioxidant Supplementation in Pregnancy: Effects on Maternal and Infant Health. Int. J. Adv. Multidiscip. Res. 2023;10(11):60-70.
- Obeagu EI, Obeagu GU. Mitigating Oxidative Stress in Pregnancy through Antioxidant Supplementation: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(9):7-17.
- Obeagu EI, Obeagu GU. Enhancing Maternal and Fetal Well-being: The Role of Antioxidants in Pregnancy. Elite Journal of Medical Sciences. 2024;2(4):76-87.
- 24. Obeagu EI, Obeagu GU. Antioxidant Supplementation and Prevention of Early Pregnancy Loss: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(9):28-37. https://doi.org/10.22270/ijmspr.v10i4.120
- 25. Obeagu EI, Obeagu GU. Molar Pregnancy: Update of prevalence and risk factors. Int. J. Curr. Res. Med. Sci. 2023;9(7):25-28. https://doi.org/10.19080/JGWH.2023.25.556169
- Obeagu EI, Obeagu GU. Hypoxia-induced Metabolic Changes in Pregnancy: Clinical Perspectives. Elite Journal of Medicine. 2024;2(8):50-59.
- 27. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. Elite Journal of Haematology. 2024;2(3):67-80.

[39] AJDHS.COM