

Available online at ajdhs.com

Asian Journal of Dental and Health Sciences

Open Access to Dental and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Review Article

Assessing Anemia in Pregnant Women: The Usefulness of the Mentzer Index

Emmanuel Ifeanyi Obeagu *

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Article Info:

Article History:

Received 08 Nov 2024 Reviewed 20 Dec 2024 Accepted 15 Jan 2025 Published 15 March 2025

Cite this article as:

Obeagu EI, Assessing Anemia in Pregnant Women: The Usefulness of the Mentzer Inde, Asian Journal of Dental and Health Sciences. 2025; 5(1):20-24

DOI: http://dx.doi.org/10.22270/ajdhs.v5i1.114

Abstract

Anemia during pregnancy is a prevalent concern, with iron deficiency anemia (IDA) and thalassemia trait (TT) being two common causes. Differentiating between these conditions is crucial for effective management, as IDA requires iron supplementation, while TT does not. The Mentzer Index (MI) is a simple, cost-effective tool used to distinguish between IDA and TT by analyzing the mean corpuscular volume (MCV) and red blood cell (RBC) count. This review explores the usefulness of the Mentzer Index in assessing anemia in pregnant women, its clinical applications, benefits, and limitations in practice. The Mentzer Index provides a quick and efficient means of diagnosing anemia types by calculating the ratio of MCV to RBC. A value below 13 typically suggests thalassemia trait, while a higher value points to iron deficiency anemia. In pregnancy, where anemia is common due to increased iron demands, the Mentzer Index serves as an essential tool to guide treatment decisions. By helping clinicians avoid unnecessary iron supplementation in women with thalassemia, it reduces the risk of complications such as iron overload, thereby improving patient outcomes.

Keywords: Anemia, Pregnant Women, Mentzer Index, Iron Deficiency, Thalassemia

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Introduction

Anemia during pregnancy is a widespread condition that affects millions of women worldwide, with a significant impact on maternal and fetal health. It is particularly prevalent in low- and middle-income countries, where nutritional deficiencies, especially iron deficiency, are more common. Anemia in pregnancy has been linked to a variety of adverse outcomes, including preterm birth, low birth weight, maternal fatigue, and in severe cases, maternal mortality. The most common cause of anemia in pregnancy is iron deficiency anemia (IDA), but other conditions such as thalassemia trait (TT) can also lead to similar symptoms, making the diagnosis of anemia more complex. Accurate identification of the underlying cause is crucial for providing appropriate treatment and preventing complications.¹⁻² Iron deficiency anemia thalassemia trait are both types of microcytic anemia, which means they are characterized by smaller-thannormal red blood cells (RBCs). However, the causes of these conditions are vastly different. IDA is caused by a deficiency of iron, which is necessary for hemoglobin production, leading to reduced oxygen-carrying capacity in the blood. On the other hand, thalassemia is a genetic disorder that affects hemoglobin production, leading to the production of abnormal hemoglobin chains. While both conditions present with low hemoglobin levels and microcytosis, the treatment strategies are entirely different. Iron supplementation is effective for IDA, but

it is contraindicated in thalassemia, as it can lead to iron overload and associated complications such as organ damage. $^{3-4}$

The challenge in differentiating between IDA and thalassemia is compounded during pregnancy, a time when physiological changes can influence laboratory results. For instance, pregnancy-induced changes in blood volume and red blood cell mass can lead to a dilutional effect, making it difficult to interpret routine blood tests. Additionally, some women may present with mixed anemia, such as a combination of iron deficiency and thalassemia trait, further complicating diagnosis and treatment. Therefore, accurate and reliable diagnostic tools are needed to distinguish between the different types of anemia and guide appropriate treatment.⁵ One such tool is the Mentzer Index (MI), which provides a quick and effective method for distinguishing between IDA and thalassemia trait. The Mentzer Index is calculated by dividing the mean corpuscular volume (MCV) by the red blood cell (RBC) count. A lower MI value (typically below 13) suggests thalassemia trait, while a higher value indicates iron deficiency anemia. This simple formula is easy to calculate from routine blood tests, making it an accessible and cost-effective tool for healthcare providers, especially in resource-limited settings. The Mentzer Index has gained recognition in clinical practice for its ability to quickly differentiate between these two common causes of anemia.6 The use of the Mentzer

[20] AJDHS.COM

Index in pregnant women is particularly valuable, as early identification of anemia type can lead to more targeted treatment. In cases of iron deficiency anemia, iron supplementation can be prescribed to address the deficiency and improve maternal and fetal health outcomes. Conversely, in women with thalassemia trait, unnecessary iron supplementation can be avoided, preventing the risk of iron overload and its associated complications. Furthermore, by providing a rapid assessment of anemia type, the Mentzer Index can guide further diagnostic testing, such as hemoglobin electrophoresis or serum ferritin levels, which may be required to confirm the diagnosis.⁷⁻⁸

The Mentzer Index: Calculation and Interpretation

The Mentzer Index (MI) is a diagnostic tool used to differentiate between two common causes of microcytic anemia: iron deficiency anemia (IDA) and thalassemia trait (TT). The MCV is a measure of the average size of red blood cells, and the RBC count is the total number of red blood cells in a given volume of blood. These values are typically obtained from a standard complete blood count (CBC), which is one of the most commonly ordered laboratory tests in clinical practice. The Mentzer Index provides an efficient and cost-effective method for distinguishing between IDA and TT, as these two conditions have different underlying causes and require different management strategies. 9-10

Interpretation of the Mentzer Index is based on the following general guidelines:

- Mentzer Index < 13: A lower MI value suggests thalassemia trait. In TT, the RBC count is usually normal or elevated, while the MCV is low due to the presence of abnormal hemoglobin. As a result, the MI value falls below the threshold of 13, indicating the need for further investigation, such as hemoglobin electrophoresis, to confirm the presence of thalassemia.¹¹
- **Mentzer Index > 13**: A higher MI value suggests iron deficiency anemia. In IDA, the MCV is low due to insufficient iron, which is necessary for hemoglobin synthesis. However, the RBC count may be low due to a decrease in overall red blood cell production. Therefore, a higher MI value points to iron deficiency, prompting the initiation of iron supplementation and further investigation into iron stores (e.g., serum ferritin levels).¹²
- Mentzer Index between 13 and 15: In some cases, the MI value falls within a gray zone between these two conditions, particularly in cases of mixed anemia, such as the presence of both iron deficiency and thalassemia trait. In these situations, additional diagnostic tests, such as serum ferritin levels or hemoglobin electrophoresis, are recommended to obtain a definitive diagnosis.¹³

Application of the Mentzer Index in Pregnancy

The application of the Mentzer Index in pregnancy plays a crucial role in the timely and accurate differentiation between iron deficiency anemia (IDA) and thalassemia trait (TT), two common causes of microcytic anemia that can occur during pregnancy. Pregnant women are particularly susceptible to anemia due to increased iron demands, blood volume expansion, and physiological changes that occur throughout pregnancy. As anemia can negatively impact both maternal and fetal health, accurate diagnosis is essential for appropriate management. The Mentzer Index, a simple and cost-effective diagnostic tool, assists clinicians in identifying the underlying cause of anemia by analyzing the mean corpuscular volume (MCV) and red blood cell (RBC) count from routine blood tests. 14-15 Pregnancy increases the body's iron requirements due to the expansion of maternal blood volume, fetal iron demands, and placental growth. As a result, iron deficiency anemia is particularly common during pregnancy, especially in women with poor dietary intake, excessive blood loss, or preexisting conditions that impair iron absorption. The Mentzer Index can help differentiate IDA from thalassemia trait, which is also characterized by microcytosis but has a different pathophysiology. Thalassemia, a genetic disorder that leads to abnormal hemoglobin production, often presents with low MCV values, similar to IDA. However, in contrast to IDA, women with thalassemia trait generally do not require iron supplementation, and unnecessary iron therapy can lead to complications, such as iron overload. The Mentzer Index provides a rapid and simple method to help distinguish these two conditions, guiding clinicians in their treatment decisions.¹⁶ The clinical utility of the Mentzer Index in pregnancy is particularly important in reducing the risk of misdiagnosis and unnecessary treatments. In cases where the Mentzer Index suggests iron deficiency anemia (MI > 13), iron supplementation is typically initiated to address the deficiency and support both maternal and fetal health. However, when the MI is low (MI < 13), indicating thalassemia trait, iron supplementation is avoided, preventing the risk of iron overload, which could lead to complications such as organ damage. Furthermore, the Mentzer Index serves as an effective screening tool in resource-limited settings, where more expensive diagnostic tests such as hemoglobin electrophoresis may not be readily available. It offers a quick, accessible, and reliable means to guide further diagnostic testing, ensuring accurate management of anemia in pregnant women.¹⁷

Benefits of the Mentzer Index in Clinical Practice

The Mentzer Index (MI) offers several benefits in clinical practice, especially in the diagnosis and management of anemia, particularly in differentiating between iron deficiency anemia (IDA) and thalassemia trait (TT). Its advantages lie in its simplicity, cost-effectiveness, and ability to provide rapid insights, making it an invaluable tool for healthcare providers, especially in resource-limited settings.¹⁸

1. **Simplicity and Quick Calculation**: One of the primary benefits of the Mentzer Index is its simplicity. It is calculated using two standard

[21] AJDHS.COM

laboratory values: the mean corpuscular volume (MCV) and red blood cell (RBC) count, both of which are routinely measured in a complete blood count (CBC).¹⁹

- 2. **Cost-Effective**: The Mentzer Index is a low-cost diagnostic tool, particularly beneficial in low-resource or underserved settings where more expensive tests, such as hemoglobin electrophoresis, may not be available. By relying on routine CBC results, the MI allows for the initial screening of anemia types without the need for specialized equipment or procedures, making it an affordable and accessible option for healthcare facilities in both developed and developing regions.²⁰
- 3. Differentiation Between Iron Deficiency and Thalassemia: The Mentzer Index excels at distinguishing between two common causes of microcytic anemia—iron deficiency anemia (IDA) and thalassemia trait (TT). This differentiation is crucial because the management of these two conditions is markedly different. Iron deficiency anemia requires iron supplementation, while thalassemia trait does not. By providing a simple and rapid means of distinguishing between these two conditions, the Mentzer Index helps clinicians avoid the risk of misdiagnosis and unnecessary treatments, such as iron supplementation in patients with thalassemia trait.²¹
- 4. **Guiding Further Diagnostic Testing**: While the Mentzer Index is useful for initial screening, it also serves as a guide for more comprehensive diagnostic investigations. If the MI suggests thalassemia trait (MI < 13), further testing, such as hemoglobin electrophoresis, can confirm the diagnosis. Similarly, if the MI is high (MI > 13), indicating iron deficiency anemia, the next step would typically involve measuring serum ferritin levels to assess iron stores and confirm the diagnosis. This stepwise approach reduces the likelihood of misdiagnosis and ensures that patients receive the appropriate interventions.²²
- 5. **Improved Patient Management**: The rapid results from the Mentzer Index enable timely and appropriate treatment, enhancing patient outcomes. For example, if iron deficiency anemia is suspected, prompt iron supplementation can be initiated to prevent complications such as maternal fatigue, low birth weight, and preterm birth. On the other hand, in cases of thalassemia trait, unnecessary iron supplementation is avoided, which helps prevent iron overload and its associated risks, such as organ damage. The ability to make informed clinical decisions based on the Mentzer Index helps ensure that patients receive the correct treatment for their specific condition.²³
- 6. Universal Applicability in Various Settings: The Mentzer Index is versatile and can be applied across diverse patient populations, including pregnant women, children, and adults. It is particularly valuable in high-risk groups, such as pregnant women, where anemia is common and distinguishing

between iron deficiency and thalassemia is critical for ensuring proper management. Additionally, its utility in low-resource settings where access to advanced diagnostic tools is limited further amplifies its significance in improving anemia diagnosis and management worldwide.²⁴

Limitations and Challenges of the Mentzer Index

While the Mentzer Index (MI) is a valuable and widely used diagnostic tool for differentiating between iron deficiency anemia (IDA) and thalassemia trait (TT), it is not without limitations and challenges that clinicians must consider when using it in practice. These limitations can affect its reliability and accuracy in certain patient populations or clinical situations, which can lead to misdiagnosis or inappropriate management if not carefully interpreted.

- 1. **Reliability in Mixed Anemia**: One of the primary limitations of the Mentzer Index is its reduced reliability in cases of mixed anemia, where both iron deficiency and thalassemia trait coexist. In such cases, the MCV and RBC count values may not consistently fit the typical patterns seen in pure IDA or TT, leading to ambiguous or borderline MI values. This could make it difficult to accurately differentiate between the two conditions. For example, in some patients with coexisting iron deficiency and thalassemia trait, the MI may fall within the "gray zone" (between 13 and 15), requiring further diagnostic tests such as hemoglobin electrophoresis or serum ferritin measurements for clarification.²⁵
- 2. Influence of Other Causes of Microcytosis: The Mentzer Index is most useful in distinguishing between IDA and thalassemia trait in cases of microcytic anemia, but it may not be reliable when anemia is caused by other factors, such as anemia of chronic disease, lead poisoning, or vitamin B12/folate deficiencies. These conditions can also present with low MCV values but have entirely different pathophysiological mechanisms and management strategies. The MI does not account for these other causes of anemia, which can lead to misdiagnosis and inappropriate treatment if clinicians rely solely on the MI for diagnosis.²⁵
- 3. Variation in Laboratory Measurements: The accuracy of the Mentzer Index depends on the precision of the laboratory measurements used to calculate the MCV and RBC count. Inaccuracies in these values, due to technical factors or differences in laboratory equipment and methods, can affect the validity of the MI calculation. Additionally, variations in patient demographics (such as age, sex, or ethnicity) may influence the interpretation of MCV and RBC values, further complicating the MI's diagnostic utility. In clinical settings, especially in resource-limited areas, inconsistencies in laboratory techniques may reduce the reliability of the MI as a diagnostic tool.²⁶
- 4. **Limited to Microcytic Anemia**: The Mentzer Index is specifically designed to evaluate microcytic

[22] AJDHS.COM

anemia, where the red blood cells are smaller than normal. It is not applicable for diagnosing macrocytic or normocytic anemias, which can be caused by a variety of other factors, such as vitamin deficiencies, chronic disease, or bone marrow disorders. This limitation means that while the MI is valuable for differentiating between IDA and TT, it does not address other causes of anemia and should not be used as a sole diagnostic tool in broader anemia evaluations.²⁷

- 5. Inadequate for Severe Thalassemia or Anemia of **Chronic Disease**: In patients with severe thalassemia or anemia of chronic disease, the MI may not provide a clear distinction between these conditions and IDA. Severe thalassemia can present with low MCV values but may not follow the typical pattern that the Mentzer Index is designed to identify. Similarly, anemia of chronic disease often presents with normocytic or microcytic anemia, but the MI may not be sensitive enough to differentiate this from iron deficiency anemia or thalassemia trait. In such cases, more specific tests, such as serum iron studies. ferritin levels, or hemoglobin electrophoresis, are necessary for an accurate diagnosis.27
- 6. Lack of Standardization and Consensus: While the Mentzer Index is widely used, there is no universal agreement on the exact cut-off values for interpretation. Some sources suggest that a MI below 13 indicates thalassemia trait, while others may propose different thresholds. This lack of standardization can lead to variations in clinical practice and potential inconsistencies in diagnosis. As a result, healthcare providers should exercise caution when interpreting the MI and consider it as part of a broader diagnostic workup, incorporating clinical findings and additional tests to confirm the diagnosis.

Conclusion

In conclusion, the Mentzer Index (MI) remains a valuable and cost-effective tool in the diagnosis of microcytic anemia, particularly in differentiating between iron deficiency anemia (IDA) and thalassemia trait (TT). Its simplicity, ease of calculation, and ability to provide rapid insights make it an attractive option, especially in resource-limited settings where advanced diagnostic tools may not be readily available. The MI offers a quick and accessible means to guide clinical decision-making, potentially reducing unnecessary treatments, such as iron supplementation, and improving patient outcomes.

However, despite its advantages, the Mentzer Index has limitations that must be recognized and addressed. It is less reliable in cases of mixed anemia, where both IDA and TT coexist, and it may not be effective in diagnosing other causes of microcytic anemia, such as anemia of chronic disease or lead poisoning. Additionally, variations in laboratory techniques and patient demographics can affect the accuracy of MI calculations, leading to potential misdiagnosis. Thus, while the MI

serves as a helpful screening tool, it should not be used in isolation but rather as part of a comprehensive diagnostic approach that includes further confirmatory tests such as hemoglobin electrophoresis or serum ferritin measurements.

Conflict of Interest: Author declares no potential conflict of interest with respect to the contents, authorship, and/or publication of this article.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting in this paper are available in the cited references.

Ethics approval: Not applicable.

References

- Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, Ota E, Gilmour S, Shibuya K. Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis. The American journal of clinical nutrition. 2016; 103(2):495-504. https://doi.org/10.3945/ajcn.115.107896 PMid:26739036
- 2. Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. Int J Curr Res Chem Pharm Sci. 2016;3(3):10-18. https://doi.org/10.22270/ijmspr.v10i2.95
- 3. Okamgba OC, Nwosu DC, Nwobodo EI, Agu GC, Ozims SJ, Obeagu EI, Ibanga IE, Obioma-Elemba IE, Ihekaire DE, Obasi CC, Amah HC. Iron Status of Pregnant and Post-Partum Women with Malaria Parasitaemia in Aba Abia State, Nigeria. Annals of Clinical and Laboratory Research. 2017;5(4):206.
- Petrakos G, Andriopoulos P, Tsironi M. Pregnancy in women with thalassemia: challenges and solutions. International journal of women's health. 2016:441-451. https://doi.org/10.2147/IJWH.S89308 PMid:27660493 PMCid:PMC5019437
- Obeagu EI, Adepoju OJ, Okafor CJ, Obeagu GU, Ibekwe AM, Okpala PU, Agu CC. Assessment of Haematological Changes in Pregnant Women of Ido, Ondo State, Nigeria. J Res Med Dent Sci. 2021 Apr;9(4):145-148.
- Agreen FC, Obeagu EI. Anaemia among pregnant women: A review of African pregnant teenagers. Journal of Public Health and Nutrition. 2023;6(1):138.
- Arora S, Rana D, Kolte S, Dawson L, Dhawan I. Validation of new indices for differentiation between iron deficiency anemia and beta thalessemia trait, a study in pregnant females. International Journal of Scientific Reports. 2018; 4(2):26. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20180394
- 8. Obeagu EI, Obeagu GU, Insights into Maternal Health: Mentzer Index for Early Anemia Detection, International Journal of Medical Sciences and Pharma Research, 2024; 10(4):44-49 https://doi.org/10.22270/ijmspr.v10i4.122
- 9. Obeagu EI, Influence of Hemoglobin Variants on Vaso-Occlusive Phenomena in Sickle Cell Anemia: A Review, International Journal of Medical Sciences and Pharma Research, 2024;10(2):54-59 https://doi.org/10.22270/ijmspr.v10i2.104
- Iolascon A, Andolfo I, Russo R, Sanchez M, Busti F, Swinkels D, Aguilar Martinez P, Bou-Fakhredin R, Muckenthaler MU, Unal S, Porto G. Recommendations for diagnosis, treatment, and prevention of iron deficiency and iron deficiency anemia. Hemasphere. 2024; 8(7):e108. https://doi.org/10.1002/hem3.108 PMid:39011129 PMCid:PMC11247274

[23] AJDHS.COM

- Obeagu EI, Obeagu GU, Chukwueze CM, Ikpenwa JN, Ramos GF. Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri metropolis. Madonna University journal of Medicine and Health Sciences ISSN: 2814-3035. 2022 Apr 19;2(2):1-9.
- Obeagu EI, Obeagu GU. Neonatal Outcomes in Children Born to Mothers with Severe Malaria, HIV, and Transfusion History: A Review. Elite Journal of Nursing and Health Science, 2024; 2(3): 38-58
- Sahli CA, Bibi A, Ouali F, Fredj SH, Dakhlaoui B, Othmani R, Laouini N, Jouini L, Ouenniche F, Siala H, Touhami I. Red cell indices: differentiation between β-thalassemia trait and iron deficiency anemia and application to sickle-cell disease and sickle-cell thalassemia. Clinical Chemistry and Laboratory Medicine (CCLM). 2013; 51(11):2115-24. https://doi.org/10.1515/cclm-2013-0354 PMid:23800659
- 14. Hoffmann JJ, Nabbe KC, van den Broek NM. Effect of age and gender on reference intervals of red blood cell distribution width (RDW) and mean red cell volume (MCV). Clinical Chemistry and Laboratory Medicine (CCLM). 2015; 53(12):2015-9. https://doi.org/10.1515/cclm-2015-0155 PMid:26536583
- 15. Miftahussurur M, Husada D, Ningtyas WS. Association Association Of Shine and Lal Index B-Thalassemia Trait Screening Results with Anaemia and Low Birth Weigh. International Journal of Nursing And Midwifery Science (IJNMS). 2023; 7(3):290-296. https://doi.org/10.29082/IJNMS/2023/Vol7/Iss3/543
- 16. Shahid H, Saleem M, Naseer N, Tabussam S, Aziz A, Ullah S. Evaluation of Srivastava index to distinguishing Beta-Thalassemia Trait from Iron Deficiency. Pakistan Journal of Medical & Health Sciences. 2022;16(05):1225. https://doi.org/10.53350/pjmhs221651225
- 17. Vehapoglu A, Ozgurhan G, Demir AD, Uzuner S, Nursoy MA, Turkmen S, Kacan A. Hematological indices for differential diagnosis of Beta thalassemia trait and iron deficiency anemia. Anemia. 2014; 2014(1):576738. https://doi.org/10.1155/2014/576738 PMid:24818016 PMCid:PMC4003757

- 18. Urrechaga E. Discriminant value of% microcytic/% hypochromic ratio in the differential diagnosis of microcytic anemia. Clinical chemistry and laboratory medicine. 2008;46(12):1752-1758. https://doi.org/10.1515/CCLM.2008.355 PMid:19055451
- Obeagu EI, Obeagu GU, Anemia in Pregnancy: Mentzer Index as a Predictor for Iron Supplementation Needs, International Journal of Medical Sciences and Pharma Research, 2024;10(4):39-43 https://doi.org/10.22270/ijmspr.v10i4.121
- Obeagu EI, Obeagu GU. Sickle cell anaemia in pregnancy: a review. International Research in Medical and Health Sciences. 2023 Jun 10;6(2):10-13. https://doi.org/10.22270/ijmspr.v10i2.103
- Obeagu EI, Ubosi NI, Uzoma G. Antioxidant Supplementation in Pregnancy: Effects on Maternal and Infant Health. Int. J. Adv. Multidiscip. Res. 2023;10(11):60-70.
- Obeagu EI, Obeagu GU. Mitigating Oxidative Stress in Pregnancy through Antioxidant Supplementation: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(9):7-17.
- 23. Obeagu EI, Obeagu GU. Enhancing Maternal and Fetal Well-being: The Role of Antioxidants in Pregnancy. Elite Journal of Medical Sciences. 2024;2(4):76-87.
- 24. Obeagu EI, Obeagu GU. Antioxidant Supplementation and Prevention of Early Pregnancy Loss: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(9):28-37. https://doi.org/10.22270/ijmspr.v10i4.120
- 25. Obeagu EI, Obeagu GU. Molar Pregnancy: Update of prevalence and risk factors. Int. J. Curr. Res. Med. Sci. 2023;9(7):25-28. https://doi.org/10.19080/JGWH.2023.25.556169
- Obeagu EI, Obeagu GU. Hypoxia-induced Metabolic Changes in Pregnancy: Clinical Perspectives. Elite Journal of Medicine. 2024;2(8):50-59.
- 27. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. Elite Journal of Haematology. 2024;2(3):67-80.

[24] AJDHS.COM