ASIAN JOURNAL OF DENTAL AND HEALTH SCIENCES (MINIS) BOHTAL MAILING AND GRADE AND GRADE ASIAN A

Available online at ajdhs.com

Asian Journal of Dental and Health Sciences

Open Access to Dental and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Review Article

Mentzer Index in High-Risk Pregnancies: Anemia Screening and Management

Emmanuel Ifeanyi Obeagu *

Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Article Info:

Article History:

Received 05 Nov 2024 Reviewed 16 Dec 2024 Accepted 12 Jan 2025 Published 15 March 2025

Cite this article as:

Obeagu EI, Mentzer Index in High-Risk Pregnancies: Anemia Screening and Management, Asian Journal of Dental and Health Sciences. 2025; 5(1):15-19

DOI: http://dx.doi.org/10.22270/ajdhs.v5i1.113

Abstract

Anemia remains a common and critical health issue in high-risk pregnancies, leading to adverse outcomes for both the mother and fetus, including preterm birth, low birth weight, and maternal fatigue. Differentiating between the two most common causes of microcytic anemia—iron deficiency anemia (IDA) and thalassemia trait (TT)—is essential for appropriate management. The Mentzer Index, calculated by dividing the mean corpuscular volume (MCV) by the red blood cell (RBC) count, has been proposed as a simple and effective tool to distinguish between these two conditions. This review explores the role of the Mentzer Index in anemia screening and management, particularly in high-risk pregnancies, where timely and accurate diagnosis is crucial for improving health outcomes. The application of the Mentzer Index in high-risk pregnancies offers a quick and cost-effective method for clinicians to identify whether the anemia is likely due to IDA or TT. A Mentzer Index score below 13 typically suggests thalassemia trait, while scores above 13 generally point toward iron deficiency anemia. While useful, the Mentzer Index is not definitive on its own and should be complemented by other diagnostic tests, such as hemoglobin electrophoresis, serum ferritin, and transferrin saturation, to confirm the underlying cause of anemia. By integrating these methods, healthcare providers can better tailor treatment plans, ensuring that women with IDA receive appropriate iron supplementation while avoiding iron overload in those with thalassemia trait.

Keywords: Mentzer Index, high-risk pregnancies, anemia screening, iron deficiency anemia, thalassemia trait

*Address for Correspondence:

Emmanuel Ifeanyi Obeagu, Department of Biomedical and Laboratory Science, Africa University, Zimbabwe

Introduction

Anemia is one of the most prevalent conditions affecting pregnant women globally, with particularly high rates high-risk pregnancies. observed pregnancies encompass those involving women with preexisting health conditions such as diabetes, hypertension, or nutritional deficiencies, as well as those carrying multiple fetuses or facing socioeconomic challenges. These women are more vulnerable to anemia due to the increased nutritional demands during pregnancy and the complexities associated with managing existing health conditions. Anemia in pregnancy, if left untreated, can lead to a range of maternal and fetal complications, including preterm birth, low birth weight, and maternal fatigue. As a result, proper diagnosis and management of anemia are vital for ensuring the health and well-being of both the mother and the developing fetus.1-2 Two of the most common causes of microcytic anemia during pregnancy are iron deficiency anemia (IDA) and thalassemia trait (TT), both of which present with similar clinical features, such as low hemoglobin levels and microcytic hypochromic red blood cells. However, these two types of anemia require distinctly different treatment approaches. IDA is typically treated with iron

supplementation, while thalassemia trait is a genetic condition where iron supplementation is unnecessary and can lead to harmful iron overload. Differentiating between these conditions is essential for accurate diagnosis and appropriate treatment, which is often challenging in the context of pregnancy due to the overlapping symptoms and the additional diagnostic complexities posed by the physiological changes of pregnancy.³⁻⁴

The Mentzer Index has emerged as a helpful tool in this context, offering a simple and cost-effective method to differentiate between IDA and thalassemia trait. The Mentzer Index is calculated by dividing the mean corpuscular volume (MCV) by the red blood cell (RBC) count. In general, a Mentzer Index value below 13 suggests thalassemia trait, while values greater than 13 are typically indicative of iron deficiency anemia. The Mentzer Index can be a valuable initial screening tool to guide clinicians in further diagnostic workups, such as hemoglobin electrophoresis or serum ferritin testing, which are needed to confirm the diagnosis and determine the appropriate treatment course. Despite its usefulness, the Mentzer Index has limitations, including the fact that it may not accurately distinguish between other causes of anemia or when anemia is

[15] AJDHS.COM

multifactorial.⁵⁻⁶ In high-risk pregnancies, where the likelihood of anemia is elevated due to various maternal health factors, timely and accurate diagnosis is particularly crucial. The Mentzer Index allows healthcare providers to quickly narrow down the possible causes of anemia, which can accelerate treatment decisions and prevent the complications associated with both under-treatment and overtreatment. For example, in cases where a woman with a low Mentzer Index is diagnosed with thalassemia trait, iron supplementation is avoided, preventing the risk of iron overload. Conversely, a higher score can prompt clinicians to initiate iron supplementation for those with thereby preventing further complications associated with iron deficiency.⁷⁻⁸ While the Mentzer Index is an effective screening tool, it should not be used in isolation, particularly in complex cases of anemia. Pregnancy-induced changes, such as altered iron metabolism, and the presence of other underlying conditions can sometimes interfere with the accuracy of Mentzer Index. Additionally, in high-risk pregnancies, anemia is often multifactorial, which may require a more comprehensive approach to diagnosis and management. This includes combining the Mentzer Index with other diagnostic tests, such as serum ferritin, transferrin saturation, and hemoglobin electrophoresis, to ensure a more accurate understanding of the type and cause of anemia.9-10

The Role of the Mentzer Index in High-Risk Pregnancies

The Mentzer Index plays a critical role in managing anemia in high-risk pregnancies, particularly in distinguishing between two common causes of microcytic anemia: iron deficiency anemia (IDA) and thalassemia trait (TT). In high-risk pregnancies, where the prevalence of anemia is often higher due to factors such as pre-existing medical conditions, poor nutrition, or multiple gestations, accurately diagnosing the cause of anemia is crucial. Both IDA and TT present with similar symptoms, such as fatigue and pallor, but require different treatment approaches. While IDA responds well to iron supplementation, thalassemia trait does not, and inappropriate iron therapy can lead to iron overload, which can be harmful to the mother and fetus. The Mentzer Index serves as a simple, costeffective tool to help differentiate between these two conditions and guide further diagnostic workup and management. 11-12 The Mentzer Index is calculated by dividing the mean corpuscular volume (MCV) by the red blood cell (RBC) count, yielding a numerical value. In general, a Mentzer Index score below 13 suggests that the anemia is more likely to be due to thalassemia trait, while a score above 13 is indicative of iron deficiency anemia. The use of this index in high-risk pregnancies helps to quickly identify whether further testing, such as hemoglobin electrophoresis or serum ferritin measurement, is needed to confirm the diagnosis. In women with a low Mentzer Index, confirming thalassemia trait is important, as iron supplementation would not be beneficial and could worsen the condition. Conversely, a high Mentzer Index can prompt the initiation of iron therapy for those with IDA, addressing the root cause of the anemia and preventing complications such as preterm birth and low birth weight.¹³⁻¹⁴

Beyond its diagnostic utility, the Mentzer Index has significant implications for clinical practice in high-risk pregnancies. By using the index as a preliminary screening tool, healthcare providers can streamline the process of identifying anemia and initiate timely interventions. In the context of high-risk pregnancies, where maternal and fetal health are more vulnerable to complications from anemia, early diagnosis and appropriate treatment are crucial. The Mentzer Index provides a quick and easy way for clinicians to assess whether a pregnant woman is at risk for either IDA or thalassemia trait, ensuring that both conditions are managed appropriately. Moreover, by preventing the unnecessary administration of iron to women with thalassemia trait, the Mentzer Index helps avoid the risk of iron overload, which can lead to complications such as liver damage, heart failure, or gestational diabetes. 15-¹⁶ While the Mentzer Index is a valuable tool, it is not without its limitations, especially in complex cases. The physiological changes during pregnancy, such as altered iron metabolism and volume expansion, can sometimes affect the MCV and RBC count, potentially leading to inaccurate results. Additionally, anemia in high-risk pregnancies is often multifactorial, and other underlying conditions such as chronic disease or vitamin deficiencies could further complicate the diagnostic process. As such, the Mentzer Index should be used as part of a broader diagnostic strategy, incorporating other tests like serum ferritin, hemoglobin electrophoresis, and complete blood count (CBC) to provide a comprehensive understanding of the patient's anemia.¹⁷ In high-risk pregnancies, the Mentzer Index proves to be a useful initial diagnostic tool, but it should not be relied upon as the sole determinant for treatment decisions. The index must be complemented with additional diagnostic tests to confirm the cause of anemia and to tailor the management strategy accordingly. It is essential for clinicians to incorporate a holistic view of the patient's health status, considering factors like nutritional intake, preexisting conditions, and the overall clinical picture, to ensure that the appropriate interventions are taken. The role of the Mentzer Index in high-risk pregnancies lies in its ability to differentiate between two common causes of anemia, ultimately guiding treatment decisions that can improve maternal and fetal outcomes.18

Anemia Screening in High-Risk Pregnancies

Anemia screening in high-risk pregnancies is a critical aspect of maternal care, given the increased likelihood of anemia in women with underlying health conditions, poor nutrition, or multiple gestations. High-risk pregnancies often involve factors such as preexisting medical conditions (e.g., hypertension, diabetes, sickle cell disease), socioeconomic challenges, and nutritional deficiencies, which elevate the risk of developing anemia. Anemia during pregnancy can lead to serious complications for both the mother and fetus, including preterm labor, low birth weight, fatigue, and in severe

[16] AJDHS.COM

cases, maternal death. Therefore, early detection and proper management of anemia are essential for improving maternal and fetal health outcomes.¹⁹ The most common causes of anemia in pregnancy are iron deficiency anemia (IDA) and anemia due to other underlying conditions, including thalassemia, vitamin B12 deficiency, or chronic disease. Among these, IDA is the most prevalent form, characterized by insufficient iron stores needed for the production of hemoglobin. In contrast, thalassemia is a genetic blood disorder that can lead to microcytic anemia, which often presents similarly to IDA but requires different treatment, as iron supplementation is not beneficial for those with thalassemia. Given the overlap in clinical presentation between these two types of anemia, differentiating between them is crucial for appropriate management. Accurate screening tools, such as the Mentzer Index, are essential in guiding the diagnosis and helping clinicians determine the appropriate course of treatment.²⁰

Screening for anemia in high-risk pregnancies typically involves several stages, including a detailed clinical assessment, laboratory tests, and sometimes specialized diagnostic tools. The first step in anemia screening is often a complete blood count (CBC) to assess hemoglobin levels, mean corpuscular volume (MCV), and red blood cell count. If anemia is suspected, further tests such as serum ferritin, transferrin saturation, and hemoglobin electrophoresis may be necessary to confirm the underlying cause. For example, a low Mentzer Index score (MCV/RBC < 13) may suggest thalassemia trait, while a higher value typically points to IDA. By combining the Mentzer Index with other diagnostic tests, clinicians can quickly and effectively identify the cause of anemia, making it easier to determine whether iron supplementation is appropriate or if further investigation into thalassemia or other conditions is needed.²¹ The implementation of anemia screening in high-risk pregnancies has several key benefits, including early identification of anemia, reduced risk of complications, and targeted treatment plans. Early diagnosis of IDA allows for prompt iron supplementation, which can improve maternal energy levels, reduce fatigue, and lower the risk of preterm delivery and low birth weight. On the other hand, identifying women with thalassemia trait helps avoid unnecessary iron supplementation, preventing iron overload, which could lead to complications such as organ damage or gestational diabetes. Regular screening during prenatal visits allows healthcare providers to monitor hemoglobin levels and adjust treatment as necessary throughout the pregnancy, ensuring the best possible outcomes for both mother and child.²² Despite its importance, anemia screening in high-risk pregnancies faces several challenges. For one, the physiological changes in pregnancy, such as increased plasma volume and altered iron metabolism, can complicate anemia diagnosis. Pregnant women also often present with multifactorial anemia, where more than one cause contributes to the low hemoglobin levels. Furthermore, in resource-limited settings, access to diagnostic tools such as hemoglobin electrophoresis or serum ferritin tests may be limited, making it difficult to definitively diagnose the cause of anemia. Therefore, while anemia screening is essential, it must be integrated into a comprehensive approach to maternal care that includes clinical judgment, ongoing monitoring, and access to necessary diagnostic resources.²³

Implications for Anemia Management

The implications of anemia management in high-risk pregnancies are significant, as anemia can have detrimental effects on both maternal and fetal health. Proper management is essential for preventing complications such as preterm labor, low birth weight, fatigue, and in severe cases, maternal mortality. The approach to managing anemia must be tailored to the underlying cause, which often involves differentiating between iron deficiency anemia (IDA) and other forms of anemia, such as thalassemia or anemia due to chronic diseases. The use of tools like the Mentzer Index plays a pivotal role in guiding the diagnosis, as it helps distinguish between these different causes, thereby informing the treatment strategy. Identifying whether the anemia is due to IDA or thalassemia allows clinicians to decide whether iron supplementation is appropriate, preventing unnecessary interventions that could lead to complications like iron overload.²⁴ For patients with iron deficiency anemia, management primarily involves iron supplementation to replenish iron stores and support the production of hemoglobin. Oral iron supplements are commonly prescribed, but in cases of severe anemia or when oral supplements are not tolerated, intravenous iron may be used. Adequate iron intake not only alleviates fatigue and improves maternal well-being but also reduces the risk of adverse pregnancy outcomes, such as preterm birth, low birth weight, and fetal growth restriction. Additionally, managing anemia can help improve placental function, which is critical for optimal fetal development. On the other hand, thalassemia requires a different approach, as iron supplementation is contraindicated. In these cases, treatment focuses on managing the thalassemia trait, which may involve regular monitoring of hemoglobin levels, folic acid supplementation, and sometimes blood transfusions if anemia becomes severe.25

Another crucial aspect of anemia management in highrisk pregnancies is monitoring and adjusting treatment over time. Pregnancy itself brings about physiological changes that can affect iron metabolism and red blood cell production, which may impact anemia management strategies. Regular monitoring of hemoglobin levels and serum ferritin can help track the effectiveness of treatment and guide necessary adjustments. Additionally, for women with complex anemia profiles, such as those with both iron deficiency and thalassemia, managing the condition can be particularly challenging, requiring a multidisciplinary approach to care. For these women, ensuring that all aspects of their anemia are addressed is vital for preventing complications during pregnancy and labor.26 In high-risk pregnancies, a comprehensive anemia management plan should also take into account nutritional support, as malnutrition is

[17] AJDHS.COM

a key contributor to anemia, especially iron deficiency. Nutritional counseling can be an essential component of anemia management, as it helps ensure that pregnant women receive an adequate intake of iron, folic acid, and other essential nutrients. In resource-limited settings where access to iron supplements and diagnostic tests may be limited, educational interventions and community-based health strategies can help promote awareness about anemia prevention and treatment. Addressing the root causes of anemia, such as poor dietary intake or underlying health conditions like malaria or parasitic infections, is also crucial for improving maternal and fetal health outcomes.²⁷

Conclusion

Anemia management in high-risk pregnancies is a crucial component of maternal and fetal healthcare, and early detection through effective screening tools like the Mentzer Index can significantly improve outcomes. The Mentzer Index, by differentiating between iron deficiency anemia (IDA) and thalassemia trait, plays a pivotal role in guiding the appropriate treatment approach, thus preventing complications associated with incorrect diagnoses and unnecessary treatments, such as iron overload. Timely and accurate identification of anemia causes ensures that women receive the most suitable intervention, whether iron supplementation for IDA or genetic counseling and management for thalassemia trait.

However, it is essential to acknowledge that anemia in pregnancy can be multifactorial, and while the Mentzer Index offers a helpful starting point, it should be used in conjunction with other diagnostic tests and clinical evaluations. The physiological changes in pregnancy, along with the complexities of maternal health, can sometimes make anemia diagnosis challenging, requiring a comprehensive approach that includes clinical assessment, laboratory testing, and continuous monitoring.

Conflict of Interest: Author declares no potential conflict of interest with respect to the contents, authorship, and/or publication of this article.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting in this paper are available in the cited references.

Ethics approval: Not applicable.

References

 Rahman MM, Abe SK, Rahman MS, Kanda M, Narita S, Bilano V, Ota E, Gilmour S, Shibuya K. Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis. The American journal of clinical nutrition. 2016; 103(2):495-504. https://doi.org/10.3945/ajcn.115.107896 PMid:26739036

- Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. Int J Curr Res Chem Pharm Sci. 2016;3(3):10-18. https://doi.org/10.22270/ijmspr.v10i2.95
- Okamgba OC, Nwosu DC, Nwobodo EI, Agu GC, Ozims SJ, Obeagu EI, Ibanga IE, Obioma-Elemba IE, Ihekaire DE, Obasi CC, Amah HC. Iron Status of Pregnant and Post-Partum Women with Malaria Parasitaemia in Aba Abia State, Nigeria. Annals of Clinical and Laboratory Research. 2017;5(4):206.
- Petrakos G, Andriopoulos P, Tsironi M. Pregnancy in women with thalassemia: challenges and solutions. International journal of women's health. 2016:441-451. https://doi.org/10.2147/IJWH.S89308 PMid:27660493 PMCid:PMC5019437
- Obeagu EI, Adepoju OJ, Okafor CJ, Obeagu GU, Ibekwe AM, Okpala PU, Agu CC. Assessment of Haematological Changes in Pregnant Women of Ido, Ondo State, Nigeria. J Res Med Dent Sci. 2021 Apr;9(4):145-148.
- Agreen FC, Obeagu EI. Anaemia among pregnant women: A review of African pregnant teenagers. Journal of Public Health and Nutrition. 2023;6(1):138.
- Arora S, Rana D, Kolte S, Dawson L, Dhawan I. Validation of new indices for differentiation between iron deficiency anemia and beta thalessemia trait, a study in pregnant females. International Journal of Scientific Reports. 2018; 4(2):26. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20180394
- 8. Obeagu EI, Obeagu GU, Insights into Maternal Health: Mentzer Index for Early Anemia Detection, International Journal of Medical Sciences and Pharma Research, 2024; 10(4):44-49 https://doi.org/10.22270/ijmspr.v10i4.122
- 9. Obeagu EI, Influence of Hemoglobin Variants on Vaso-Occlusive Phenomena in Sickle Cell Anemia: A Review, International Journal of Medical Sciences and Pharma Research, 2024;10(2):54-59 https://doi.org/10.22270/ijmspr.v10i2.104
- Iolascon A, Andolfo I, Russo R, Sanchez M, Busti F, Swinkels D, Aguilar Martinez P, Bou-Fakhredin R, Muckenthaler MU, Unal S, Porto G. Recommendations for diagnosis, treatment, and prevention of iron deficiency and iron deficiency anemia. Hemasphere. 2024; 8(7):e108. https://doi.org/10.1002/hem3.108 PMid:39011129 PMCid:PMC11247274
- Obeagu EI, Obeagu GU, Chukwueze CM, Ikpenwa JN, Ramos GF. Evaluation of protein C, protein S and fibrinogen of pregnant women with malaria in Owerri metropolis. Madonna University journal of Medicine and Health Sciences ISSN: 2814-3035. 2022 Apr 19;2(2):1-9.
- Obeagu EI, Obeagu GU. Neonatal Outcomes in Children Born to Mothers with Severe Malaria, HIV, and Transfusion History: A Review. Elite Journal of Nursing and Health Science, 2024; 2(3): 38-58
- 13. Sahli CA, Bibi A, Ouali F, Fredj SH, Dakhlaoui B, Othmani R, Laouini N, Jouini L, Ouenniche F, Siala H, Touhami I. Red cell indices: differentiation between β-thalassemia trait and iron deficiency anemia and application to sickle-cell disease and sickle-cell thalassemia. Clinical Chemistry and Laboratory Medicine (CCLM). 2013; 51(11):2115-24. https://doi.org/10.1515/cclm-2013-0354 PMid:23800659
- 14. Hoffmann JJ, Nabbe KC, van den Broek NM. Effect of age and gender on reference intervals of red blood cell distribution width (RDW) and mean red cell volume (MCV). Clinical Chemistry and Laboratory Medicine (CCLM). 2015; 53(12):2015-9. https://doi.org/10.1515/cclm-2015-0155 PMid:26536583
- 15. Miftahussurur M, Husada D, Ningtyas WS. Association Association Of Shine and Lal Index B-Thalassemia Trait Screening Results with Anaemia and Low Birth Weigh. International Journal of Nursing And Midwifery Science (IJNMS). 2023; 7(3):290-296. https://doi.org/10.29082/IJNMS/2023/Vol7/Iss3/543
- 16. Shahid H, Saleem M, Naseer N, Tabussam S, Aziz A, Ullah S. Evaluation of Srivastava index to distinguishing Beta-Thalassemia Trait from Iron Deficiency. Pakistan Journal of Medical & Health

[18] AJDHS.COM

- Sciences. 2022;16(05):1225. https://doi.org/10.53350/pjmhs221651225
- Vehapoglu A, Ozgurhan G, Demir AD, Uzuner S, Nursoy MA, Turkmen S, Kacan A. Hematological indices for differential diagnosis of Beta thalassemia trait and iron deficiency anemia. Anemia. 2014; 2014(1):576738. https://doi.org/10.1155/2014/576738 PMid:24818016 PMCid:PMC4003757
- 18. Urrechaga E. Discriminant value of% microcytic/% hypochromic ratio in the differential diagnosis of microcytic anemia. Clinical chemistry and laboratory medicine. 2008;46(12):1752-1758. https://doi.org/10.1515/CCLM.2008.355 PMid:19055451
- Obeagu EI, Obeagu GU, Anemia in Pregnancy: Mentzer Index as a Predictor for Iron Supplementation Needs, International Journal of Medical Sciences and Pharma Research, 2024;10(4):39-43 https://doi.org/10.22270/ijmspr.v10i4.121
- Obeagu EI, Obeagu GU. Sickle cell anaemia in pregnancy: a review. International Research in Medical and Health Sciences. 2023 Jun 10;6(2):10-13. https://doi.org/10.22270/ijmspr.v10i2.103
- 21. Obeagu EI, Ubosi NI, Uzoma G. Antioxidant Supplementation in Pregnancy: Effects on Maternal and Infant Health. Int. J. Adv. Multidiscip. Res. 2023;10(11):60-70.

- Obeagu EI, Obeagu GU. Mitigating Oxidative Stress in Pregnancy through Antioxidant Supplementation: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(9):7-17.
- 23. Obeagu EI, Obeagu GU. Enhancing Maternal and Fetal Well-being: The Role of Antioxidants in Pregnancy. Elite Journal of Medical Sciences. 2024;2(4):76-87.
- 24. Obeagu EI, Obeagu GU. Antioxidant Supplementation and Prevention of Early Pregnancy Loss: A Narrative Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024;11(9):28-37. https://doi.org/10.22270/ijmspr.v10i4.120
- 25. Obeagu EI, Obeagu GU. Molar Pregnancy: Update of prevalence and risk factors. Int. J. Curr. Res. Med. Sci. 2023;9(7):25-28. https://doi.org/10.19080/JGWH.2023.25.556169
- Obeagu EI, Obeagu GU. Hypoxia-induced Metabolic Changes in Pregnancy: Clinical Perspectives. Elite Journal of Medicine. 2024;2(8):50-59.
- 27. Obeagu EI, Obeagu GU. Hemolysis Challenges for Pregnant Women with Sickle Cell Anemia: A Review. Elite Journal of Haematology. 2024;2(3):67-80.

[19] AJDHS.COM