AMAP KOLERNAL OF DENTAL AND HEALTH SCIENCES WITH SCIENCES

Available online at ajdhs.com

Asian Journal of Dental and Health Sciences

Open Access to Pharmaceutical and Medical Research

Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Review Article

An Update on the Recent Emergence of Candida auris

Monika Jain¹, Anushree Jain¹, Basant Khare¹, Deepak Kumar Jain², Rubeena Khan¹, Dolly Jain*¹

- ¹ Adina College of Pharmacy, ADINA Campus Rd, Lahdara, Sagar, MP, 470001
- ²Sun Institute of Pharmaceutical Education & Research (SIPER), Bhatpura Road, Lahar, Bhind, MP, 477445

Article Info:

Article History:

Received 10 Jan 2022 Reviewed 26 Feb 2022 Accepted 05 March 2022 Published 15 March 2022

Cite this article as:

Jain M, Jain A, Khare B, Jain DK, Khan R, Jain D, An Update on the Recent Emergence of *Candida auris*, Asian Journal of Dental and Health Sciences. 2022; 2(1):14-19

DOI: http://dx.doi.org/10.22270/ajdhs.v2i1.11

*Address for Correspondence:

Dolly Jain, Adina College of Pharmacy, ADINA Campus Rd, Lahdara, Sagar, MP, 470001

Abstract

The incidence of invasive fungal infections (IFI) caused by unusual pathogens is on the rise, partly driven by the increased population of immunocompromised patients. The emerging multidrugresistant yeast pathogen Candida auris (C. auris) has been a source of concern as an agent of healthcare-associated infections. C. auris is emerging multidrug-resistant yeast that causes serious invasive infections with high mortality. It was first discovered in 2009, and since then, individual cases or outbreaks have been reported from over 20 countries on five continents. Controlling C. auris is challenging for several reasons: (1) it is resistant to multiple classes of antifungals, (2) it can be misidentified as other yeasts by commonly available Identification methods, and (3) because of its ability to colonize patients perhaps indefinitely and persist in the healthcare environment, it can spread between patients in healthcare settings. The transmissibility and high levels of antifungal resistance that are characteristic of C. auris set it apart from most other Candida species. A robust response that involves the laboratory, clinicians, and public health agencies is needed to identify and treat infections and prevent transmission. This review highlights epidemiology, pathogenesis, microbiological characteristics, clinical presentation, diagnostic challenges and treatment options of C. auris infections. Infection prevention measures to prevent spread of C. auris and special measures during an outbreak situation have also been reviewed. Rapid emergence of hospital onset C. auris is worrisome. Early diagnosis of C. auris is essential for better outcomes and the implementation of infection prevention measures. Lack of widespread awareness, absence of general availability of diagnostic testing methods, and limited options for treatment of C. auris infections make it a difficultto-treat pathogen. Further studies are needed for better understanding of this emerging pathogen.

Keywords: Fungal infection, Candida, C. auris, Candidemia, Bloodstream infection

Email: dollyjain.btpc@gmail.com

Introduction

Candida species commonly colonizes the human mucosal and skin surfaces with potential to cause infections. Disruption in host immunity increases the risk for development of opportunistic infections from Candida. Candidemia is recognized as the fourth most common cause of nosocomial bloodstream infections in the United States (US) associated with high morbidity and mortality rates (30%-40%)¹. Candida auris is emerging multidrug-resistant yeast that can cause invasive infections, is associated with high mortality, and can spread in healthcare settings. This yeast was first described in 2009 and has since been reported in over 20 countries on five continents. C. auris poses a global health threat for several reasons:

- 1. Multidrug resistance is common, and a few isolates are resistant to all three of the main classes of antifungal drugs, severely limiting treatment options².
- 2. *C. auris* is commonly misidentified in clinical laboratories. Unless laboratories are aware of possible misidentification and have the ability to perform further evaluation, cases of *C. auris* could go undetected.
- 3. *C. auris* can be transmitted between patients in healthcare settings and cause healthcare-associated outbreaks. *C. auris* can colonize patients, especially on the skin, perhaps

indefinitely, and persist for weeks in the healthcare environment. The lack of decolonization methods and suboptimal efficacy of some commonly used hospital environmental disinfectants compounds the challenge of controlling its spread.

The genus Candida comprises an array of phenotypically similar yet genetically highly divergent yeasts. C. auris differs markedly from common pathogenic Candida species like Candida albicans and Candida glabrata. In healthcare settings, C. auris behaves more like transmissible bacterial multidrugresistant organisms (MDROs), such as methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriacea (CRE), than other Candida species. Unlike other Candida infections, which are generally thought to result from autoinfection from host flora, C. auris can be transmitted between patients. Unlike for most other Candida species, for which transmission-based precautions are generally not required, *C. auris* requires implementation of specific infection control measures, much like those used for control of MRSA and CRE. With itsmultidrug resistance, transmissibility and severe outcomes, *C. auris* has all the makings of a superbug. Control of C. auris requires better understanding of the organism itself, vigilance and accurate identification, appropriate treatment and infection control measures, and a coordinated public health response. We review the emergence of C. auris, examining the global advent, biology, challenges of

[14] AJDHS.COM

identification, multidrug resistance, clinical manifestations, treatment, risk factors for infection, transmission, and control of *C. auris*.

Epidemiology

Incidence and prevalence

The incidence of Candida infections and causative Candida species has varied with time and across geographic locations. Until recently, the most common isolated species during nosocomial fungemia has been C. albicans, however with changing epidemiology, non-C. albicans has emerged as the predominant species in many countries1. Candida glabrata is recognized as the most common cause of candidemia in the US while C. parapsilosis, C. tropicalis and C. krusei are common in other parts of the world1. The true incidence of *C. auris* fungemia and its global prevalence are poorly understood. This uncertainty is related to failure of conventional diagnostic methods to accurately identify C. auris and lack of global availability of diagnostic methods for its rapid identification³. Few centers with diagnostic capabilities have estimated incidence and prevalence of C. auris fungemia at their healthcare facilities. Prevalence of C. auris was rare prior to 2009 according to the investigation conducted on a pool of uncommon Candida species included in the international antifungal surveillance program (SENTRY). Of the 15,271 isolates reviewed from 4 continents between 2004-2015, only four isolates were identified as C. auris⁴. However, since 2009 there has been a rapid and global emergence of C. auris. According to a single center study in Sub-Saharan Africa from September 2010-June2013, candidemia attributed to 39% of nosocomial infections. During the study period, C. haemulonii, later reidentified as C. auris, was the most common cause of hospital-onset fungemia (38%) followed by C. albicans (27%)⁵. Another study in multiple hospital systems in South Africa highlighted the prevalence of *C. auris*-related candidemia to be 0.3%6. Unfortunately, both these studies did not provide specific data on study period and total number of candidemia cases identified to understand the true impact of *C. auris*. A tertiary medical center in South America reported C. auris as the 6th most common cause of bloodstream infection in the hospital between March 2012-July 20137. An 18-month prospective study in Indian ICUs reported 1400 candidemia cases. Candida auris was identified as the 5th most common cause of ICU-onset candidemia, discovered in 19 of 27 ICUs, with prevalence of 5.3% (n=74) 8. A random one-year screening for *C. auris* in patients admitted at a cardiothoracic center in London identified prevalence rate of 0.04% (1/2246 screened patients)9. Overall, the prevalence of C. auris, predominantly nosocomial-onset, is rising globally.

Isolation of C. auris

Candida auris has been isolated from multiple body sites. First isolation of C. auris was from the external ear canal of a 70year-old woman in Japan¹⁰. A multicenter surveillance study in Korea (2004-2006) reported 15 specimens isolated from the ears of patients with chronic otitis media as closely related *C.* haemulonii species by sequence analysis, later re-identified as C. auris11. Vaginal sample from a young woman in India identified *C. auris* as cause of vulvovaginitis¹². *Candida auris* has been described as the cause of fatal pericarditis in an Indian patient with end stage liver disease¹³. First three cases of bloodstream infection from C. auris were reported from South Korea in 200914. A fatal case of donor-derived C. auris infection was reported in a 71-year old lung transplant recipient in the US in 2017¹⁵. Currently, C. auris fungemia has been reported nearly from all continents except Australia and Antarctica. As awareness of *C. auris* has grown, novel isolates and previously unidentified Candida isolates are increasingly being recognized as C. auris. According to the Center for

Diseases control and prevention (CDC) in the United States, 86 isolates of *C. auris* have been identified in the US from infectious and non-infectious sources, mostly emerging from the east coast.

Biology and morphology

The closest relatives of C. auris are C. ruelliae, C. pseudohaemulonii, Candida duobushaemulonii, vulturna, C. heveicola, Candida konsanensis, chanthaburiensis, C. haemulonii, and Candida haemulonis var. vulnera16. C. auris is an ovoid to elongate budding yeast, which seldom forms rudimentary pseudohyphae and typically appears as pink, but sometimes white or red, colonies on CHROMagar Candida or CAN2 chromogenic medium. This organism has a high tolerance for salinity and heat. Its unique ability to grow at temperatures up to 42 • C16-20 and to grow in high salt conditions may help to distinguish *C. auris* from other *Candida* species and aid laboratory isolation¹⁹. However, none of the phenotypic characteristics of *C. auris* are sufficient evidence for definitive identification. Sequencing, mass spectrometry, or a VITEK 2 version 8.01 are needed to accurately distinguish C. auris from closely related Candida species. Some strains of *C. auris* have been reported to form aggregations in culture, which may allow the organism to resist penetration by detergents, ultraviolet light, or other cleaning methods²¹. *C. auris* also forms biofilms, which provide a mechanism of adherence to surfaces. However, these biofilms are significantly thinner and less complex than those of C. albicans, primarily due to the rarity of pseudohyphae. C. auris may therefore have reduced ability to attach to surfaces like catheter material as compared to species that can form more robust biofilms²². In animal models, *C. auris* exhibits similar or slightly less virulence as C. albicans and Candida tropicalis and greater virulence than the closely related species *C.* haemulonii^{23,24}. Its ability to form biofilms, produce phospholipase and proteinase, and secrete aspartic proteases as well as the presence of oligopeptide transporters and mannosyl transferases may explain some of the virulence seen with *C. auris*, though some of these characteristics have varied by strain²⁵. Aggregate-forming strains may be less virulent than strains without cell aggregations. Despite these advances in our understanding of C. auris, much remains unknown about its cell biology and virulence characteristics.

Risk factors

Candida auris is a hospital-acquired pathogen causing infection in certain high-risk patient populations. The predisposing risk factors for C. auris infection are similar to other candidal species. Patients with immunocompromising diseases (diabetes mellitus, malignancy, chronic kidney disease, neutropenia), concomitant bacteremia, broadspectrum antibacterial or antifungal therapy in prior 90 days, surgery within 90 days, presence of central venous catheters or urinary catheters, stay in intensive care unit (ICU) and total parenteral nutrition (TPN) administration confer increased risk for acquiring *C. auris*²⁶⁻²⁸. Till date, only one case-control study has been performed to determine specific risk factors predisposing to *C. auris* candidemia⁸. The study was conducted in the ICUs in India comparing *C. auris* (n=74) and non-auris (n=1087) fungemia cases. The multivariate analysis showed patients with respiratory illness, vascular surgery, antifungal exposure in prior 30-days and low APACHE II score on admission had higher likelihood to develop ICU-onset C. auris fungemia.

Multidrug resistance

C. auris is a highly concerning pathogen because it can be resistant to multiple antifungal drugs, with some isolates resistant to all three major antifungal classes (azoles,

[15] AJDHS.COM

polyenes, and echinocandins). The Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST) have not established clinical susceptibility minimum inhibitory concentration (MIC) breakpoints for C. auris. In the interim, CDC has proposed the following tentative breakpoints, conservatively based on those established for other species: ≥32 for fluconazole, ≥2 for amphotericin B (or ≥1.5 if using Etest), ≥4 for anidulafungin and micafungin, and ≥2 for caspofungin²⁹. In a collection of 54 isolates from India, Pakistan, South Africa, and Venezuela, 93% of isolates were resistant to fluconazole, 35% were resistant to amphotericin B, and 7% were resistant to echinocandins using the following breakpoints: ≥32 for fluconazole, ≥2 for amphotericin B, and ≥8 for echinocandins. Forty-one percent of isolates were resistant to at least two drug classes and two isolates were pan-resistant.

In the largest study of *C. auris* resistance, on 350 isolates from India, 90% of isolates were resistant to fluconazole by the tentative breakpoints described above, 2% to anidulafungin, 2% to micafungin, and 8% to amphotericin B. In the United States, about 90% of isolates have been resistant to fluconazole, 30% have been resistant to amphotericin B, and 5% have been resistant to echinocandins²⁹. Public Health England has reported that all UK isolates have been resistant to fluconazole, approximately 20% have been resistant to amphotericin B, and about 10% have been resistant to echinocandins³⁰. Taking data from around the world into account, C. auris has been generally resistant to fluconazole, and a substantial portion of isolates has been resistant to amphotericin B and echinocandins Most other species of Candida identified in clinical specimens exhibit high in vitro susceptibility to antifungal drugs. One of the other drugresistant Candida of high concern has been C. glabrata, in which approximately 10% of isolates in the United States exhibit fluconazole resistance and 0-10% echinocandin resistance31,32. In comparison, the level of drug resistance observed in C. auris is unprecedented. Molecular mechanisms underlying this resistance are currently under investigation. Twelve Erg11 mutations, which have been found in fluconazole-resistant but not wild-type C. albicans, have been found in C. auris33. Three of these mutations have been directly linked to drug resistance in *C. albicans*, suggesting that they contribute to the resistance observed in *C. auris* as well³⁴. Efflux pump activity contributes to azole resistance in other Candida species and may contribute to resistance in C. auris, though the extent of this contribution is unknown. None of these mechanisms alone can account for the high levels of resistance seen in *C. auris*, so multiple mechanisms are likely involved. Elevated echinocandin MICs are likely the result of FKS mutations observed in C. auris isolates, such as the S639F mutation observed in isolates from India³³. These mutations correspond to known mutations in other Candida species, which have been directly linked to echinocandin resistance³⁵. Finally, while resistance to amphotericin B is rare in the most common Candida species, it is observed in approximately 30% of US isolates of *C. auris*. Though unconfirmed at this time, it is suspected that this is likely due to a reduction in ergosterol content in the cellular membrane-specifically a mutation in a gene involved in ergosterol biosynthesis³⁶.

Clinical manifestations

Similar to other *Candida* species, *C. auris* can cause severe invasive infections or colonize patients without infection. *C. auris* has been isolated from normally sterile body sites, including blood, bone, and cerebrospinal fluid, indicating invasive infection. Infections may be severe, and persistently positive blood cultures for >5 days or recurrent candidemia in those with *C. auris* candidemia have been reported. *C. auris*

candidemia is associated with mortality rates of about 30–60%, depending on the setting. Other clinical sources found in the course of routine patient care have been bile fluid, the ear, jejuna biopsy, ocular secretion, peritoneal fluid, pleural fluid, the respiratory tract, urine, vaginal fluid, and wounds; some of these represent sites of colonization rather than infection. Patients can also be asymptomatically colonized with *C. auris* on the skin, nares, and other body sites³⁷⁻³⁹.

Diagnosis

The under-recognition and delay in accurate diagnosis of *C. auris* species has been attributed to its misidentification by commercial biochemical methods (manual and automated). The conventional commercial diagnostic yeast identification systems such as Vitek 2, BD Phoenix and API20 are not able to identify or frequently misidentify *C. auris* isolates as one of the closely related *Candida* species *C. haemulonii, C. famata, C. catenulata, C. sake* and *Rhodotorula glutinis*⁴⁰.

Molecular testing

Investigators have relied upon molecular methods to facilitate accurate identification of *C. auris* species. One of the most common methods described in multiple research studies and case reports was genomic DNA extraction from the misidentified Candida species followed by DNA amplification and sequencing of the internal transcribed spacers (ITS) and D1/D2 regions of the ribosomal DNA. These sequences were re-identified based on 98%-100% homology with C. auris isolate using GenBank Basic Local Alignment Search Tool (BLAST) from national center for biotechnology information (NCBI) database^{18,41}. The ITS sequencing was also beneficial to define genomic diversity between C. auris and closely related Candida isolates differentiating them into separate clades with bootstrap value of 99%18,42. Rapid, efficient and successful identification of C. auris isolates was shown using MSVITEK and Bruker MicroFlex Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF) identification system⁴³. However, caution is advised while using MALDI-TOF as not all devices include C. auris in the reference database44. During laboratory identification and validation of CDC panel containing C. auris, incorporation of research-use-only library containing C. auris resulted in accurate identification of C. auris isolates by both MALDI-TOF systems⁴⁵. Polymerase chain reaction (PCR) and real-time PCR assays have been developed targeting rDNA region nucleotide sequences specific for C. auris. The assays showed rapid and accurate identification of *C. auris* similar to DNA sequencing results⁴⁶. The US CDC has provided guidance to healthcare facilities to suspect *C. auris* based on detection of misidentified Candida species by standard testing method and for accurate identification of C. auris using diagnostic methods such as MALDI-TOF with updated database and DNA sequencing. Laboratories located in the US without capability to identify suspected Candida isolates have an option to send samples to the CDC using state public health laboratories for further characterization.

Geographical link

Geographical clustering of *C. auris* isolates has been performed using genomic and proteomic analysis based on mutilocus sequence typing (MLST), MALDI-TOF MS and amplified fragment length polymorphism (AFLP) typing⁴². Among the analytic methods, M13 PCR fingerprinting and AFLP is recognized as most efficient for strain typing and for geographical clustering helpful in epidemiological analysis⁴². The AFLP typing grouped *C. auris* strains mainly into two clusters of Indian and Brazilian origin⁴². Isolates from South African origin were randomly distributed among both clusters. *C. auris* isolates from India, Brazil and South Africa were clonal

[16] AJDHS.COM

for the respective country of origin with 99%-100% nucleotide sequence similarity. A multicenter study in United Kingdom (UK) performed rDNA sequencing of 24 *C. auris* isolates, grouping the *C. auris* strains into three different lineages belonging to India/Malaysia/Kuwait, Japan/Korea and South African origin⁴⁷. Whole genome sequencing (WGS) of *C. auris* isolates showed genome size of 12.5Mb similar to other *Candida* species. The WGS helped establish independent emergence of *C. auris* isolates in different continents as the isolates differed by tens of thousands of single nucleotide polymorphisms (SNPs) between the geographic locations. The isolates from the US seem to be related to those from South Asia (<60 SNPs apart) and South America (<150 SNPs apart), with no proven direct or indirect travel link⁴⁸.

Treatment

Only three major classes of antifungal drugs are available to treat invasive fungal infections. *C. auris* poses a real treatment challenge because of high rates of antifungal drug resistance. As reported above, most C. auris isolates are resistant to fluconazole, the most widely available antifungal treatment for candidiasis. The alternatives, echinocandins and amphotericin B, are expensive and are not easily available in countries with more limited resources. Amphotericin B is also known for causing severe side effects. Although studies have reported therapeutic outcomes, no systematic study has assessed effectiveness of various antifungals against *C. auris* infections in humans. However, in a mouse model, micafungin wasmore efficacious at killing C. auris than fluconazole and amphotericin B. An in vitro study examining combinations of treatment with echinocandins and azoles found a synergistic interaction between micafungin and fluconazole and did not find any antagonistic interactions between micafungin or caspofungin and fluconazole or voriconazole. Research is also being conducted on activity of new drugs like SCY- 078, APX001A/APX001and CD101against C. auris, but these options are not yet available for clinical use in most settings. Based on the most frequent resistance profiles, echinocandins are the recommended first-line treatment for most C. auris infections in adults. Antifungal susceptibility testing is advised to inform treatment and patients should be closely monitored for treatment failure. Acquired resistance while on treatment is a concern. Echinocandin resistance has developed in patients with C. auris infection while receiving echinocandin treatment. For neonates and infants under 2 months of age. CDC recommends amphotericin B deoxycholate (1 mg/kg daily) as the first line treatment, with consideration of liposomal amphotericin B (5 mg/kg daily) if unresponsive to amphotericin B deoxycholate. Echinocandin treatment in neonates and infants less than 2 months of age should only be considered in rare circumstances and only after checking that the central nervous system has not been affected. Removal of catheters and lines and surgical debridement has been used alongside antifungal drugs when clinically indicated⁴⁹⁻⁵⁵.

Conclusion

Within less than a decade of its discovery, *C. auris* surpasses all *Candida* species as the most difficult pathogen to identify and treat. Poor practice of infection prevention measures and stewardship efforts may have led to rapid spread of drugresistant *C. auris*. Lack of widespread awareness and recognition of this imminent fungal threat is likely to lead to significant consequences. Further research is needed to understand the spread of this emerging pathogen and to develop better management strategies to combat this worrisome infection.

References

- Mikulska M, Del Bono V, Ratto S, et al. Occurrence, presentation and treatment of candidemia. Expert Rev Clin Immunol. 2012; 8(8):755-65. https://doi.org/10.1586/eci.12.52
- Lockhart SR, Etienne KA, Vallabhaneni S et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017; 64:134-140. https://doi.org/10.1093/cid/ciw691
- 3. Centers for Disease Control and Prevention. Clinical alert to US healthcare facilities: global Emergence of Invasive Infections Caused by the Multidrug-Resistant Yeast Candida auris [Internet] Atlanta: CDC: 2017.
- 4. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis.2017; 64(2):134-40. https://doi.org/10.1093/cid/ciw691
- 5. Okinda EK, Castanheira M, Njuguna A, et al. Candidemia at a referral hospital in Sub-Saharan Africa: Emergence of Candida auris as a major pathogen. European Conference on Clinical Microbiology and Infectious diseases: 2014: Barcelona, Spain[Poster Session]
- Magobo RE, Corcoran C, Seetharam S, et al. Candida auris-associated candidemia, South Africa. Emerg Infect Dis. 2014; 20(7):1250-1. https://doi.org/10.3201/eid2007.131765
- Calvo B, Melo AS, Perozo-Mena A, et al. First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia. J Infect. 2016; 73(4):369-74. https://doi.org/10.1016/j.jinf.2016.07.008
- 8. Rudramurthy SM, Chakrabarti A, Paul RA, et al. Candida auris candidaemia in Indian ICUs: analysis of risk factors. J Antimicrob Chemother. 2017; 72(6):1794-801. https://doi.org/10.1093/jac/dkx034
- Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016; 5:35. https://doi.org/10.1186/s13756-016-0132-5
- Satoh K, Makimura K, Hasumi Y, et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009; 53(1):41-4. https://doi.org/10.1111/j.1348-0421.2008.00083.x
- 11. Kim MN, Shin JH, Sung H, et al. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin Infect Dis. 2009; 48(6):e57-61. https://doi.org/10.1086/597108
- 12. Kumar D, Banerjee T, Pratap CB, et al. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis. J Infect Develop Countries. 2015; 9(4):435-7. https://doi.org/10.3855/jidc.4582
- Khillan V, Rathore N, Kathuria S, et al. A rare case of breakthrough fungal pericarditis due to fluconazole-resistant Candida auris in a patient with chronic liver disease. JMM Case Rep. 2014. https://doi.org/10.1099/jmmcr.0.T00018
- 14. Lee WG, Shin JH, Uh Y, et al. First three reported cases of nosocomial fungemia caused by Candida auris. J Clin Microbiol. 2011; 49(9):3139-42. https://doi.org/10.1128/JCM.00319-11
- 15. Azar MM, Turbett SE, Fishman JA, et al. Donor-derived transmission of Candida auris during lung transplantation. Clin Infect Dis. 2017. https://doi.org/10.1093/cid/cix460
- 16. Sipiczki M, Tap RM. Candida vulturna pro tempore sp. nov., a dimorphic yeast species related to the Candida haemulonis species complex isolated from flowers and clinical sample. Int J Syst Evol Microbiol. 2016; 66:4009-4015. https://doi.org/10.1099/ijsem.0.001302
- Sherry L, Ramage G, Kean R et al. Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis. 2017; 23:328-331. https://doi.org/10.3201/eid2302.161320

[17] AJDHS.COM

- 18. Kathuria S, Singh PK, Sharma C et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol. 2015; 53:1823-1830. https://doi.org/10.1128/JCM.00367-15
- 19. Welsh RM, Bentz ML, Shams A, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic healthcare surface. J Clin Microbiol. 2017; 55:2996-3005. https://doi.org/10.1128/JCM.00921-17
- 20. Ben-Ami R, Berman J, Novikov A et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis. 2017; 23:195-203. https://doi.org/10.3201/eid2302.161486
- 21. Borman AM, Szekely A, Johnson EM. Isolates of the emerging pathogen Candida auris present in the UK have several geographic origins. Med Mycol. 2017; 55:563-567. https://doi.org/10.1093/mmy/myw147
- 22. Larkin E, Hager C, Chandra J et al. The emerging pathogen Candida auris: growth phenotype, virulence factors, activity of antifungals, and effect of SCY- 078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrob Agents Chemother. 2017; 61:e02396-16. https://doi.org/10.1128/AAC.02396-16
- Borman AM, Szekely A, Johnson EM. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere. 2016; 1:e00189-16. https://doi.org/10.1128/mSphere.00189-16
- 24. Fakhim H, Vaezi A, Dannaoui E et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses. 2018; 61:377-382. https://doi.org/10.1111/myc.12754
- Chatterjee S, Alampalli SV, Nageshan RK, Chettiar ST, Joshi S, Tatu US. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics. 2015; 16:686. https://doi.org/10.1186/s12864-015-1863-z
- 26. Chowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: 'new kid on the block' in hospital-associated infections. J Hosp Infect. 2016; 94(3):209-12. https://doi.org/10.1016/j.jhin.2016.08.004
- 27. Chowdhary A, Anil Kumar V, Sharma et al. Multidrug-resistant endemic clonal strain of Candida auris in India. European J Clin Microbiol Infect Dis.2014; 33(6):919-26. https://doi.org/10.1007/s10096-013-2027-1
- 28. Chowdhary A, Sharma C, Duggal S, et al. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis. 2013; 19(10):1670-3. https://doi.org/10.3201/eid1910.130393
- 29. Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention. Recommendations for identification of Candida auris. 2017; https://www.cdc.gov/fungal/candidaauris/recommendations.html.
- 30. Bishop L, Cummins M, Guy R et al. Guidance for the laboratory investigation, management and infection prevention and control for cases of Candida auris. Vol v 2.0. London: Public Health England. 2017.
- 31. Vallabhaneni S, Cleveland AA, Farley MM et al. Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008-2014. Open Forum Infect Dis. 2015; 2:ofv163. https://doi.org/10.1093/ofid/ofv163
- 32. Lockhart SR, Iqbal N, Cleveland AA et al. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol. 2012; 50:3435-3442. https://doi.org/10.1128/JCM.01283-12
- 33. Chowdhary A, Prakash A, Sharma C et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris

- isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018; 73:891-899. https://doi.org/10.1093/jac/dkx480
- 34. Flowers SA, Colon B, Whaley SG, Schuler MA, Rogers PD. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015; 59:450-460. https://doi.org/10.1128/AAC.03470-14
- 35. Perlin DS. Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci. 2015; 1354:1-11. https://doi.org/10.1111/nyas.12831
- 36. Pfaller MA, Espinel-Ingroff A, Canton E et al. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. J Clin Microbiol. 2012; 50:2040-2046. https://doi.org/10.1128/JCM.00248-12
- Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B, Chiller T, Vallabhaneni S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med Mycol. 2018; 0:1-12. https://doi.org/10.1093/mmy/myy054
- Al-Siyabi T, Al Busaidi I, Balkhair A, Al-Muharrmi Z, Al-Salti M, Al'Adawi B. First report of Candida auris in Oman: clinical and microbiological description of five candidemia cases. J Infect. 2017; 75:373-376. https://doi.org/10.1016/j.jinf.2017.05.016
- Rudramurthy SM, Chakrabarti A, Paul RA et al. Candida auris candidaemia in Indian ICUs: analysis of risk factors. J Antimicrob Chemother. 2017; 72:1794-1801. https://doi.org/10.1093/jac/dkx034
- Navalkele BD, Revankar S, Chandrasekar P. Candida auris: A worrisome, globally emerging pathogen, Expert Rev Anti-infect Ther. 2017. https://doi.org/10.1080/14787210.2017.1364992
- 41. Kim TH, Kweon OJ, Kim HR, et al. Identification of uncommon candida species using commercial identification systems. J Microbiol Biotechnol. 2016; 26(12):2206-13. https://doi.org/10.4014/jmb.1609.09012
- 42. Prakash A, Sharma C, Singh A, et al. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect. 2016; 22(3):277.e1- 9. https://doi.org/10.1016/j.cmi.2015.10.022
- Girard V, Mailler S, Chetry M, et al. Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser desorption ionisation time of flight mass spectrometry. Mycoses. 2016; 59(8):535-8. https://doi.org/10.1111/myc.12519
- 44. Candida auris Interim Recommendations for Healthcare Facilities and Laboratories [Internet] Atlanta, CDC 2016.
- 45. Mizusawa M, Miller H, Green R, et al. Can multidrug-resistant candida auris be reliably identified in clinical microbiology laboratories. J Clin Microbiol. 2017; 55(2):638-40. https://doi.org/10.1128/JCM.02202-16
- Kordalewska M, Zhao Y, Lockhart SR, et al. Rapid and accurate molecular identification of the emerging multidrug resistant pathogen Candida auris. J Clin Microbiol. 2017. https://doi.org/10.1128/JCM.00630-17
- 47. Borman AM, Szekely A, Johnson EM. Isolates of the emerging pathogen Candida auris present in the UK have several geographic origins. Med Mycol. 2017. https://doi.org/10.1093/mmy/myw147
- 48. Tsay S, Welsh RM, Adams EH, et al. notes from the field: ongoing transmission of candida auris in health care facilities United States, June 2016-May 2017. MMWR Morb Mortal Wkly Rep. 2017; 66(19):514-5. https://doi.org/10.15585/mmwr.mm6619a7
- Lepak AJ, Zhao M, Berkow EL, Lockhart SR, Andes DR. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob Agents Chemother. 2017; 61:e00791-17. https://doi.org/10.1128/AAC.00791-17

[18] AJDHS.COM

- 50. Fakhim H, Chowdhary A, Prakash A et al. In vitro interactions of echinocandins with triazoles against multidrug-resistant Candida auris. Antimicrob Agents Chemother. 2017; 61:e01056-17. https://doi.org/10.1128/AAC.01056-17
- 51. Berkow EL, Angulo D, Lockhart SR. In vitro activity of a novel glucan synthase inhibitor, SCY-078, against clinical isolates of Candida auris. Antimicrob Agents Chemother. 2017; 61: e00435-17. https://doi.org/10.1128/AAC.00435-17
- 52. Hager CL, Larkin EL, Long L, Zohra Abidi F, Shaw KJ, Ghannoum MA. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob Agents Chemother. 2018; 62:e02319-17. https://doi.org/10.1128/AAC.02319-17
- 53. Berkow EL, Lockhart SR. Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagn Microbiol Infect Dis. 2018; 90:196-197. https://doi.org/10.1016/j.diagmicrobio.2017.10.021
- 54. Choi HI, An J, Hwang JJ, Moon SY, Son JS. Otomastoiditis caused by Candida auris: case report and literature review. Mycoses. 2017; 60:488-492. https://doi.org/10.1111/myc.12617
- 55. Lesho EP, BronsteinMZ, McGann P et al. Importation, mitigation, and genomic epidemiology of Candida auris at a large teaching hospital. Infect Control Hosp Epidemiol. 2018: 39:53-57. https://doi.org/10.1017/ice.2017.231

[19] AJDHS.COM